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1.0       INTRODUCTION

The Municipal and Industrial Solid Waste Division of the U.S. Environmental Protection
Agency’s (EPA) Office of Solid Waste (OSW), in coordination with the Association of State and
Territorial Solid Waste Management Officials Steering Committee and a Federal Advisory
Committee Act group representing various industries, is developing guidance concerning the
disposal of industrial non-hazardous wastes.  The Guidance is intended to help state regulators
and owners/operators of industrial facilities with non-hazardous waste to determine an
appropriate site and design for a waste management unit (WMU). The Industrial D Guidance
covers a variety of topics including: siting of WMUs, waste characterization, air controls,
monitoring, groundwater protection, and corrective action.  The Industrial D Guidance outlines a
3-tiered approach to the evaluation of a proposed WMU as it would impact groundwater quality. 
There are three levels of evaluation: 1) look-up tables based upon conservative assumptions and
groundwater fate-and-transport analyses using a national database (Tier 1); 2) location-adjusted
evaluating using an artificial neural network (Tier 2); and, a detailed evaluation involving site
characterization and use of a site-specific groundwater modeling tool (Tier 3).  Use of EPA’s
Industrial Waste Management Evaluation Model (EPAIWEM) is involved in Tier 1 and Tier 2. 

The overall objective of the tiered approach to non-hazardous waste facility evaluation is to allow
for differences in information  and modeling needs from one facility to another. Specifically, one
facility may wish to dispose of material with very low concentrations of a particular constituent
while at the same time having very little information concerning the hydrology of the proposed
site.  Another facility may have a suite of chemicals that represent a range of leachate
concentrations and have much hydrologic characterization data for the site. The tiered modeling
approach is also intended to facilitate modeling by those who have little training in groundwater
modeling, but understand the basic principles of hydrology.   As a modeling tool, EPAIWEM is
intended to address these differences in data and modeling capabilities among facilities.  The
Guidance and EPAIWEM are intended to facilitate discussion among state regulators, industry,
and community environmental groups.

Prior to final release, a technical review of EPAIWEM, and the supporting documentation by
those experienced in groundwater monitoring and neural network development was necessary to
ensure that the methodology, the analytical approach, and the software tools were complete and
appropriate for the intended purpose. The Economic, Methods, and Risk Analysis Division
(EMRAD) in OSW tasked DPRA, Inc. to assemble a peer review team to conduct an independent
peer review of the draft software and supporting documentation for the EPAIWEM, which will be
released to states and industries as part of the Industrial D Guidance concerning appropriate
measures for disposal of industrial wastes

Three peer reviewers with expertise in both groundwater modeling and neural network
development and training reviewed the draft software and supporting documentation for the
EPAIWEM.  The panel included the following reviewers:
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• Curtis Travis, PhD., Project Performance Corporation
• Donna Rizzo, PhD., Subterranean Research, Inc.
• Leah Rogers, PhD., Lawrence Livermore National Laboratory

In accordance with the Science Policy Council Peer Review Handbook (EPA 100-B-98-001),
EMRAD prepared a specific Technical Charge to the peer reviewers which focused the peer
reviewers on specific issues in each of their areas of expertise, as well as on the general layout of
the document.  Each reviewer prepared a letter/memorandum report which documented their
review efforts and comments.    

This report collects and summarizes the comments received from the peer reviewers into one
comprehensive document.  The report is organized into four sections including: Section 1.0 -
Introduction, Section 2.0 - General Issues, Section 3.0 - Specific Responses to Technical Charge
Questions, and Section 4.0 - Conclusions.  Please note that this report does not provide a full set
of the original review comments prepared by the peer review panel.  The original comments
submitted by each reviewer are attached to this report as Appendices A - C.  The appendices
present the original comments of the peer review panel in their entirety, including marginal
comments on supporting documentation where provided.
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2.0.  GENERAL ISSUES

Overall the reviewers found the tiered approach presented in the EPA Industrial Waste
Evaluation Model (EPAIWEM) to be very useful in for evaluating WMU designs.  The panel felt,
in particular, that the model would help those facility owners/operators, as well as state and local
staff, with less experience in ground water modeling.  The software and graphical interface were
praised for ease-of-use and clarity.   The reviewers also uniformly and positively commented on
the usefulness of the well-written and user-friendly supporting documentation.  Each reviewer
made general comments about the EPAIWEM, including general comments on the development
and training of the artificial neural network (ANN).  These general comments are summarized
below.

All of the reviewers found the EPAIWEM software and its underlying models to be high-quality,
technically-sound work; however, one reviewer had serious misgivings about the overall
organization and redefinition of standard ANN terminology in the Technical Background
Document (TBD).  This reviewer provided in-depth, specific comments on suggested
improvements to the TBD to improve the quality of the TBD and, as a result, the underlying Tier
2 ANN model.  The other two reviewers, while not explicitly stating their concerns with the TBD
in general, did provide many specific comments which reflected that viewpoint.  In most cases,
reviewers commented on the discussion presented in the TBD, and how that discussion could
potentially affect a user’s understanding of the EPAIWEM’s underlying models.  Please note
those references to page numbers throughout Section 3, refer to specific pages within the TBD.

The reviewers found that the use of EPA’s Composite Model with Transformation Products
(EPACMPT) and it Monte Carlo adaption to compute probabilistic estimates of constituent
concentrations in groundwater is appropriate.  The probabilistic approach allows for quick
screening of sites using a minimum amount of site-specific data, which will save users time and
money.

Reviewers found that the ANN training and testing demonstrate that ANNs can reasonably
predict the general pattern of the EPACMPT model results over a range of input parameters. 
However, contradictory results and recommendations, problems with the neural network training,
and the non-intuitiveness of the input parameters decrease confidence in the code and the ANNs
predictive capability.  One of the difficulties is that there are too many input parameters used in
the construction of the neural networks.  In addition, one reviewer felt that some important
parameters, such as groundwater flow rate, were omitted. These comments are more thoroughly
discussed in Section 3.3  The Quality and Appropriateness of the Artificial Neural Network Tool.

For a summary of the specific comments related to the questions raised in EPA’s Technical
Charge to Peer Reviewers, please see Section 3.0.
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3.0 SPECIFIC RESPONSES TO TECHNICAL CHARGE QUESTIONS

The Technical Charge to Reviewers developed by EMRAD requested that the technical peer
review panel focus on four major areas in reviewing the EPAIWEM software and accompanying
documentation.  Each of these major review areas is presented in the following Subsections:

• Section 3.1 -- The Application of EPACMPT to the Tier 1 and Tier 2 Analyses;

• Section 3.2 – The Assumptions and Parameters Used to Develop the Tier 1 and Tier 2
Evaluations;

• Section 3.3 -- The Quality and Appropriateness of the Neural Network Tool for its
Intended Purpose; and, 

• Section 3.4 -- The Overall Quality of the Software and Documentation.

In each of these areas, the Technical Charge directed the peer review panel to provide comments
on very specific areas.  These specific directions and the peer review panel responses are provided
below.  For purposes of clarity, the specific direction provided by EMRAD is presented in italics
immediately followed by a summary of the reviewers’ comments.

3.1 The Application of EPACMPT to the Tier 1 and Tier 2 Evaluations

Reviews of EPACMTP by the SAB and other independent peer-review panels have focused on the
assumptions, approaches to sampling, and the computational methods.  This review is not
intended to be a review of EPACMTP, per se, but instead a review of its application to the
development of IWEM.

• Comment on the tiered approach to analysis of the WMU liner-design.  Does it serve       
the intended purpose?

All three reviewers found that the tiered approach to analysis of the WMU liner-design was
reasonable and met its intended purpose.  One reviewer stated that “The tiered approach was
designed to accomplish two objectives: (1) allow for the two cases of sites with very little
information concerning hydrology and for sites with a much more complete characterization of
ground water hydrology, and (2) facilitate modeling by those with little training in ground water
modeling. The two-tiered approach presented in the document accomplishes both objectives. The
two-tiered approach is  reasonable in that it permits users with varying degrees of site
characterization data to obtain an immediate analysis and recommendation.  Those with little site-
specific data can use EPACMTP model results based on national-level data that will result in
leachate concentration threshold value (LCTVs) that would be protective anywhere in the nation.
Those with more site-specific data can input the data into the appropriate neural network and
obtain more site-specific LCTVs.”
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• Given the assumptions for the Tier 1 evaluation, is EPACMTP an appropriate tool to
use?  Are the results appropriate for the type of analysis?

Each reviewer found that the EPACMPT is an appropriate tool as applied to the development of
the EPAIWEM.  One reviewer specifically commented that the “EPACMTP is a state-of-the-art
ground water fate and transport computer code that has received extensive peer review by the
EPA Science Advisory Board and other review committees. It simulates one-dimensional,
vertically downward flow and transport of contaminants in the unsaturated zone as will as two-
dimensional or three-dimensional groundwater flow and contaminant transport in the saturated
zone.  Probability distributions of input parameters were obtained from a nationwide survey of
industrial non-hazardous Waste Management Units and their surrounding hydrogeologic
characteristics.  EPACMTP accounts for chemical and biological  transformation processes and is
capable of determining overall decay rates from chemical-specific hydrolysis constants using soil
and aquifer temperature and pH values. We believe that given the extensive peer review that
EPACMTP has undergone and its previous widespread application by EPA, the current
application of EPACMTP as the basis for EPAIWEM is  appropriate.”

• Is EPACMTP an appropriate tool for generating the response surfaces modeled by the
artificial neural networks?   Is there another tool or modeling approach that would serve
the purpose of the Tier 2, location-adjusted evaluation? 

All of the reviewers found that the EPACMTP is an appropriate tool, run in Monte Carlo mode. 
No reviewer suggested an alternative tool or modeling approach that would better serve the
purpose of the Tier 2, location-adjusted evaluation.

3.2 The Assumptions and Parameters Used to Develop the Tier 1 and Tier 2 Evaluations

• Comment on the assumptions and parameter ranges used for developing the Tier 1
National Evaluation.  Are the assumptions appropriate for the type of analysis?  Are the
parameter ranges reasonable?

Each of the reviewers found, in general, that the assumptions and general categories of
parameters used for developing the Tier 1 evaluation were reasonable and appropriate.  However,
one reviewer had specific comments on individual parameters, or categories of parameters used in
the Tier 1 evaluation.  Several of these comments are summarized below; however, to gain a
complete understanding of the reviewer’s concerns, readers should consult the original peer
review comments.

The reviewer indicated that the time period (10,000 years) over which contaminant migration is
modeled is unduly long and suggested that current models cannot produce accurate results over
this time period.

Chemical-specific biodegradation rates are not included/discussed as sensitive parameters.  It is
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not clear if any biodegradation rate was assumed in the EPACMPT Tier 1 and Tier 2 calculations. 
In addition, the median and range of decay rates are not discussed in the TBD text, but decay
rates are presented in TBD tables.  This should be clarified.

The reviewer wanted to see a discussion of the relative importance of dispersion, dilution, and
degradation in the computation of the dilution/attenuation factor (DAF).  The reviewer felt this
would help the user determine if site-specific biodegradation data would be useful in a Tier 3
analysis.

The reviewer questioned the use of hydrous ferris oxides values in the modeling.  The reviewer
stated “Hydrous ferric oxides will tend not to be found in reducing groundwater environments
which constitute a large proportion of sites.  This method for determining Kd values seems best
applied on a site-specific and not on a national tier 1 analysis.”

The reviewer also questioned the assumption that the leachate pulse duration is the same as the
operating unit’s life.  The reviewer stated that leachate will continue to migrate from the operating
unit after the assumed operating unit’s life and that the assumption that remaining waste is either
removed or has negligible additional contribution to leachate is not conservative and is unrealistic.

• Comment on the approach to estimating infiltration for the various WMUs and liner
designs.  Is the use of regional climatic data sufficient to generate appropriate ranges for
the no-liner and single clay liner scenarios?  Are the assumptions used for developing the
infiltration rates for the no-liner, single clay liner and composite liner appropriate and
realistic?  If not, please recommend other assumptions or approaches to estimating
infiltration. Is there a way to modify the approach to determining liner- dependent
infiltration rates in a way that balances long-term liner failure with the efficacy of long-
term liner maintenance?

In general, the reviewers had no issues with the overall approach(es) for estimating infiltration. 
No comments were received on the adequacy or inadequacy of the use of regional climatic data.  
However, two reviewers had issues with some of the assumptions used for developing infiltration
rates for liners.  These reviewers provided comments that would slightly modify the approach to
calculating infiltration rates.
 
One reviewer assumed, that the infiltration rate is the most sensitive of the input parameters used
in EPACMPT.  The reviewer felt that the TBD should document the choice of the range of
infiltration rates given in Table 4-1, 4-2, and 4-3 for the no-liner and single-liner scenarios and
should also explain the differences for these rates in the tables for landfills, surface impoundments,
and Waste Piles. The reviewer also questioned why the infiltration rate for the surface
impoundment composite liner ( Table 4-2) is less than the infiltration rates for composite liners in
Tables 4-1 and 4-3 since infiltration rates for no liner and single liner in Table 4-2 are larger than
the corresponding infiltration rates in Tables 4-1 and 4-3.
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One reviewer questioned the assumption of a single leak per acre for calculating infiltration rates
in composite liners.  This reviewer felt that a more consistent (with the rest of the modeling)
would be to sample a range of geomembrane leakage rates using actual data from studies (e.g.,
Darliek et al., 1989) as opposed to a single leakage rate.  This would be more consistent with the
Monte Carlo sampling of a range of values used for other parameters.

One reviewer felt that the TBD does not clearly explain, in Appendix B, how Rip/Tears are
treated in calculating infiltration rates.  This reviewer also felt that the use of three soil types do
not adequately represent what is found in nature -- the soils chosen do not address soils that are
essentially sands or clays.

One reviewer felt that the TBD should include a brief summary about what types of clays are
recommended to reach the 1 x 10 -7 cm/sec hydraulic conductivity levels, how difficult it is to
insure an even 3-ft layer, or other interesting issues about quality and consequences of liner
construction.

• Comment on the parameters used for the Tier 2 Location-adjusted Evaluation.  Are the
parameters appropriate to the type of analysis?  Are they parameters that would
generally be known about a site?  Should more parameters be included?  If so, which
ones?  Should parameters be deleted?

One reviewer felt that the use of seven parameters in the Tier 2 analysis is inappropriate.  The
reviewer noticed that the ANN predictions have a scatter round the baseline model predictions.
This reviewer felt that the observed scatter could be reduced by combining selected input
parameters based on the important physical processes the system is representing.

The reviewer also noticed an anomaly with the  reduction of the parameters from 12 to 7.  An
organic carbon partition coefficient (Koc) was listed as one of the seven parameters but there was
no associated organic carbon number.  Organic carbon numbers were dropped in moving from 12
to 7 parameters.  In a mechanistic sense, one needs an organic carbon number to be able to use a
Koc.  In a probabilistic sense, the higher Koc values will produce more retardation than lower
Koc values. 

The reviewer felt that a possible solution for the EPAIWEM neural network  would be to group
selected parameters together so that the total number of training parameters is reduced.  For
example, combining the surface area and infiltration rate defines the mass flux of chemical to
groundwater which should be one of the most important parameters in predicting down-gradient
concentrations.  Please see the original peer review comments for specific suggestions of how to
group/modify parameters to improve results.

One reviewer had great difficulty with the following statement on page A-7. “Modeling the
landfill scenario with EPACMTP assumes an essentially steady-state scenario in which the organic
carbon partition coefficient (KOC) has little or no effect on the output. Therefore, the landfill
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neural network did not consider KOC as an input parameter and did not use the average peak 30-
year concentration as an output parameter.”  This reviewer questioned how a steady-state
scenario with KOC having little or no effect on the output justified the elimination of one of the
ANN output parameters (max 30-yr ave. well conc.).  The reviewer questioned whether this
output parameter eliminated due to complications in training and requested clarification within the
document.

3.3 The Quality and Appropriateness of the Artificial Neural Network Tool

In training the ANNs, parameter values that ranged between the 10th and 90th percentile of the
parameters distribution were used.  Consequently, the ANNs were not trained in the range of
infiltration rate assumed for the composite liner (3 x 10-5  m/yr).  The resultant error between
EPACMTP and the ANNs when using the composite liner infiltration rate was considered
unacceptable.  Thus, the composite liner scenario is not included in the Tier 2 evaluation for this
draft of IWEM.

[Note: peer review comments in Section 3.2, often overlapped between specific issues raised in
the technical charge.  This summary document has sorted these types of “overlapping” comments
under one technical charge issue.  Please see the original peer review comments for the original
flow and organization of comments.]

• Comment on the overall approach to developing the neural networks. Was the program
used for training the ANNs appropriate?  

In general, reviewers found that four difficulties arise with the development of the neural
networks:  (1) incorrect design of the neural network, (2) too many input variables in the neural
network (3) inappropriate training of the neural network, or (4) too large an error between the
neural network predictions and output of the EPACMTP model.  The reviewers provided
comments for each.

One reviewer felt that the TBD did not clearly, and/or accurately in many cases, explain
definitions and terminology used to describe the Tier 2 ANN.  The reviewer believes the selected
algorithm to be appropriate for training.

The Tier 2 neural networks were developed using a single hidden layer.  Although a neural
network with a single hidden layer and N-1 nodes is theoretically capable of approximating any
response surface with N patterns, this type of neural network may be very difficult to train. There
is no way to tell a priori whether or not one or two hidden layers will give the best results. Simple
response surfaces can be fit easily with a single hidden layer; more complex surfaces require two
hidden layers to obtain good fits. The response surface of the EPACMTP model is fairly complex.
It is a nonlinear function with response surface spanning several orders of magnitude. Since
distributions of the input parameters were not specified in the documentation, it is not clear if the
EPACMTP function is defined on a compact set; if not, the problem is even more complicated.
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Thus, it may be that more than one hidden layer is required to approximate this surface with
minimal error.

One reviewer felt that the Tier 2 neural networks have too many input variables.  Reducing the
number of input variables will speed up training and decrease the prediction error.

Reviewers felt that the TBD was not clear on what combination of training was used to train the
Tier 2 neural networks.  For example, both Back Error Propagation and the conjugate gradient
method were used to train the neural networks. However, page 55, Paragraph 3 of the TBD
implies that only conjugate gradient was used in training. Documentation needs to be clearer on
what combination of training was used to train the Tier 2 neural networks,

The optimal learning rates of neural networks often changes dramatically during the training
process.  Page A-15 states that the learning rates for the Tier 2 neural networks were not
modified during training. Training a neural network using a constant learning rate is usually a
tedious process requiring much trial and error. 

One reviewer felt that the TBD should provide some justification for selecting the method of
backpropagation (specifically NNModel version 3.2). Although backpropagation is the only ANN
algorithm provided by Neural Fusion (1998), other algorithms exist that would have greatly
simplified the lives of the developers. If one of the goals was to find an algorithm that would
approximate processes in the same manner as regression analysis, then EPAIWEM developers
may want to consider the General Regression Neural Network (GRNN) in a second-generation
model. The GRNN algorithm has its theoretical foundations in regression analysis and requires
very little training time.   If the developers choose to remain with backpropagation, the developers
could implement modular ANNs in a second-generation model (i.e., have separate ANNs for
ranges of data where the training patterns appear to compete with each other).  This would help
the predictive capability of the backpropagation networks and greatly reduce training times. 

The reviewer took exception to the statement (page A-29) that “In general, the neural network
predictions for input parameters outside the 10th to 90th percentile values will likely be less
accurate than for input values within this range.”  The reviewer states that the neural network
should not really be used to predict values in a range that it has not been trained on. The reviewer
comments that if the ANN must make predictions outside the 10th to 90th percentile range, then a
second-generation model should include separate ANNs that are trained on data in each of these
ranges (0 to 10 and 90 to 100).  Another reviewer commented that the decision to generally train
and validate the neural networks using input values in the range of 10th to the 90th percentile. This
is a serious problem with the training protocol for the neural networks. 

The reviewer also commented that principle component analysis of the data should be conducted
before selecting the subset of input parameters. This would help justify why the backpropagation
network did not perform well, when all 10-12 input parameters were considered, and identify
additional regions of the input parameter space in which to modularize the ANNs.
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The TBD states that “overfitting”of neural networks can be avoided by careful choice of neural
network size and the amount of training applied to the neural network. Reviewers felt that this
statement is incorrect and felt that the TBD may include a discussion of how the training set is
usually such a small sampling of the overall range of possibilities or search space and overfitting is
where network weights get too specialized on idiosyncratic features of the training set and thus
has a lower generalization performance (i.e., performance on the larger search space beyond the
training set).

One reviewer felt that a serious omission in the TBD’s documentation of the neural network
development is how the necessary one-to one correspondence between neural network input
parameters and the EPACMTP model output was established.  In particular, the document is not
clear on how the correspondence between the neural networks deterministic input parameters and
the 90th percentile DAF computed by EPACMTP is established. 

One reviewer felt that, throughout the TBD, the authors confused the terms “training” data sets,
“test” data sets, and “validation” data sets.  The reviewer felt that a reader of the TBD was never
told which of these “training/test/validation” data sets were used to train the neural networks used
in the IWEM (i.e., used to fix the weights of the ANNs before they are used for validation and/or
predictions).  This could lead to misunderstanding/mistrust of the ANNs.   (Please see the original
peer review comments for comments on specific pages within the TBD.)

• Comment on the number of parameters, the range of values,  and the combinations used
for training.  Is there a training method or approach that would enable inclusion of
parameter values span many orders of magnitude?

Reviewers noted that the TBD text states that twelve parameters were selected to develop the
neural network but 13 parameters are listed in Table 3-7.

One reviewer commented that dimensional analysis of the geometric, flow, and chemical
parameters that govern the model prediction of the DAF may be a useful tool to augment or
enhance the training data sets for the ANN. 

The reviewers felt that, given that many state regulations require a groundwater resource
protection standard along with protection of existing supply wells, it may be more appropriate to
use a training data set for the ANNs which places the well directly in the centerline of the plume. 
This may make the final IWEM results more compatible with typical regulatory decision
processes.  In addition it may provide a training data set which covers fewer orders of magnitude
and allows the ANNs to achieve a better fit to the response surface.

One reviewer felt that the developers of the EPAIWEM may wish to reconsider the deletion of
two of the parameters removed from the original list of parameters used to develop the ANNs, the
Darcy velocity and the angle of monitoring well off the centerline of a plume.
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• Comment on the overall quality of the ANNs as described by the various criteria used. 
Are there other criteria that should be used to evaluate the quality of the ANNs?  Is the
error between EPACMTP and the ANNs acceptable in the context of the uncertainties
associated with groundwater modeling?

Overall, the reviewers felt that the criteria used, such as R2 values, plot, histograms, etc. were
appropriate, and that the quality of the ANNs is high.  However, one reviewer questioned how the
data transformations have affected the evaluation of the ANNs effectiveness using the criteria. 
For example, the coefficient of determination, R2, will be increased by using log-transformed data. 
It is unclear whether the predicted and measured concentrations would have exhibited an R2 that
met the stated acceptance criteria (R2 of 0.9) without manipulating (transforming) the data.

One reviewer found that running the code produced contradictory results and recommendations. 
For example, in certain situations the Tier 2 analysis resulted in higher DAFs for the No Liner
scenario than for the Single Liner situation.  Because of this, depending on initial leachate
concentrations, a chemical would be protective without a liner and not be protective with a liner. 
In other words, a higher LCTV was achieved under the No Liner than with the Single Liner
Scenario.  These results contradict reality and diminish confidence in code’s predictability.

• Comment on the various approaches used to filling in the response surface for the
purpose of getting a better fit between EPACMTP and the ANNs.  Is there a method for
better incorporating the extremes of the parameter distributions?

Only one reviewer specifically commented here.  The reviewer felt that one of the biggest
limitations of the code is the assumption of homogeneity in aquifer stratification (thickness). 
Currently the model training data sets use a 90th percentile of the aquifer thickness in the range
80 to 90 meters -- the reviewer states that most contaminant plumes are confined to layers which
are on the order of 3 to 10 meters thick. This observed plume distribution is presumably the result
of aquifer heterogeneity which typically is not represented in most groundwater modeling
applications.  In order for the DAF factors to be conservative it may be prudent to consider
limiting the aquifer thickness to a typical range of plume thicknesses that have been observed in
many cases (i.e., artificially force the model results to limit the plume thickness by constraining the
aquifer thickness).

• Comment on the approaches to selecting the training, test, and validation data sets.

One reviewer stated that the EPAIWEM used state-of-the-art methodologies to emulate the
output from the EPACMPT code.  The tools it used in conjunction with the methodology
appeared to be well thought out and appropriate.  The intended purpose was met in that a high
degree of correlation was obtained between the EPACMPT outputs and the predictions made by
the IWEM model.
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One reviewer felt that the discussions of the how the testing and validation data sets relate to each
other and if there is any overlap between them should be clarified.  In addition, the reviewer
wanted to see more landfill and land application training data sets, as well as, more training to
gain in predictive ability.

The reviewer felt that the TBD would benefit from a more complete discussion of the logic behind
the creation of additional data samples.  For example the group 1 data samples appear to be
created to add in test data which had not been well predicted by the networks (i.e., higher
residuals) to the training data.  The discussion of the Group 4 data samples is good  Overall one
has the sense from the conclusions here that the waste pile and land application unit networks
benefitted from what you learned during training the landfill and surface impoundment nets and
the former two nets have better summary statistics (pg. 62).  It is not clear that you took all that
you learned back into the training of the landfill and surface impoundment nets to get the best
performance you could from them.  

Another reviewer felt that the process for selecting the training data set for training the neural
network does not appear to be optimal. The current approach is to choose equal frequencies of
values over regular increments of input values (Page A-9, Paragraph 2). However, this procedure
will result in an over representation of infrequent values when training a neural network over the
range of the distributions of the input parameters. The reviewer feels that it is more reasonable to
use a Latin Hypercube procedure, which selects samples relative to their frequencies, to sample
the input parameter distributions to construct the training data set.

One reviewer stated that the histograms of input values used in training (Figures A.2.6 and A.2.7)
do not appear to show equal frequencies for each value over the range of values -- that too much
emphasis is placed on using the pure “star-point” distributions.  The reviewer believes that, if
obtaining equal frequencies for the training input values is deemed important, training input values
should be selected by sampling randomly from a uniform distribution of the range of input values. 

The reviewers felt that the neural network predictive capability would be improved through
further training with additional data. The training data sets appear too small and not representative
of the entire range of input parameter values.

One reviewer feels that the discussion of validation in the TBD is lacking.  In particular, the
reviewer takes issue with the following discussion on page A-29:  “The identification of a neural
network with the best generalization is better determined with a measure of the test-sample error
(residuals of the test or validation data sets), than with the training-sample error (residuals of the
training data set).”  The reviewer requests clarification as to whether the discussion implies that
the test and validation data sets are the same.
 
3.4 The Overall Quality of the Software and Documentation

• Comment on the ease-of-use and logic of IWEM.
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All of the reviewers found the EPAIWEM to be user-friendly and intuitive. The reviewers felt that
it would be possible to run the software and interpret the results without any documentation. 
Reviewers felt that the program flow was logical as it led the user from one input to another and
that users would need minimal computer and modeling experience to successfully execute this
program.

• Comment on the nature of the instructions within the program.   Are they clear and easy to
understand?

Overall, the reviewers found the software instructions straightforward and easy to work through. 
The installation was easy and consistent with industry standards.   Some of the definition boxes
could be expanded, for example, the definition of WMU.  In addition, one reviewer felt that it
might be useful to have some example justifications for parameters to indicate for archival
purposes what degree of information is helpful.  Also one reviewer felt that some of the steps
within the windows could be more complete.  For example, this reviewer wanted more instruction
on how to print reports -- the user was frustrated that, when a specific report was selected, that
the report did not automatically print.

• Comment on the layout of the user-interface screens.  Are all easy to use and read?

The reviewers found the user-interface layouts are easy to read and use.

• Comment on the presentation of results. Are they consistent and easy to understand?

The reviewers found the presentation of results to be adequate.

• Comment on the ease of installation and file manipulation (saving and retrieval?)

Overall, the reviewers found that the program was easily installed and that file saving and retrieval
operations were easy to execute.  However, one reviewer found that the buttons/icons for reports
and printing were lacking in that selecting a report did not automatically result in a print version
of the report.  The reviewer kept looking around for print or report icons.

• Comment on the logic and clarity of the documentation.  Were any important points,
assumptions missing or inadequately explained?

Overall the reviewers found that the software was so easy to use that the background
documentation did not provide much benefit to the user.  However, for those users interested in
how the tool was developed and trained, the TBD presents significant problems.  In many cases,
the discussions of the ANN training was inadequate, incomplete, or confusing.  See original peer
review comments for lengthy, specific comments on the TBD.
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• Comment on the structure of the User’s Guide.  Is it easy to follow?  Are there any
inconsistencies with the software?

The reviewers found that the structure of the User’s Guide was well-designed and easy-to-follow. 
No inconsistencies with the software were observed and/or noted. 

• Comment on the readability of the User’s Guide.  Can it be used by one without a lot of
groundwater modeling experience?

The User’s Guide was praised by all reviewers as extremely easy to use and well-written.  In
addition, along with the software itself, the reviewers specifically noted that the User’s Guide
could be easily used by people with very limited groundwater modeling experience.

• Is there sufficient explanation concerning the training of the ANNs?  What aspects of the
training should be described?  What training parameters and training data need to be
presented?

The reviewers felt that the ANN training methodology is presented in sufficient detail to
understand the logic and the process.  And that, the aspects of the training discussed are
sufficient.  However, each reviewer made specific technical comments on areas within the TBD
that need to be clarified and/or supplemented.

• Comment on the readability of the Technical Background Document.  Is it written at a
level appropriate for someone with some groundwater training and modeling experience?

The Technical Background Document is easy to read and the logic behind the modeling efforts is
easy to follow.  The reader level in the document is appropriate with the stated audience.
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4.0 CONCLUSIONS

The review panel selected to conduct a peer review of the draft software and supporting
documentation for the EPAIWEM, found that the software and supporting documentation were
of high technical quality and suitable for use by a wide range of potential users, including those
with very limited groundwater modeling experience.

The reviewers, in general, provided significant comments about the discussion found in the TBD
on training the neural networks.  Reviewers found some of the TBD discussions to be misleading
and/or inaccurate, but did not feel that deficiencies in the TBD detracted from the overall quality
of the software tool itself.  
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Review of EPA’s Industrial Waste Facility Evaluation Model

By

Stanley Peterson
Thomas McKeon
Curtis Travis
Project Performance Corporation

The Application of EPACMTP to the Tier 1 and Tier 2 Evaluations

General Comments:

The EPA Office of Solid Waste (OSW) has proposed a three tier approach for evaluation of non-
hazardous industrial waste facilities. The reviewers of the current documentation have been asked
to review the first two tiers of this methodology. Our general observations about the Industrial
Waste Facility Evaluation Models and their documentation are as follows:

• We find the two - tiered approach presented by EPA for rapid evaluation of waste
management unit designs to be  appropriate for the task at hand. It will facilitate
evaluation of industrial waste facilities by those with little training in ground water
modeling and does not require extensive site-specific data..  The first tier consists of a
look-up table based on national characteristics, while the second tier consists on four
artificial neural networks (ANNs) trained to simulate the results of EPA’s Composite
Model with Transformation Products (EPACMTP).  The second tier allows for a 
location-adjusted evaluation of industrial waste facilities.

 • The use of EPACMTP and its  Monte Carlo adaption to compute probabilistic estimates
of constituent concentrations in downgradient ground-water wells is appropriate. It allows
for estimation of maximum leachate concentrations at the waste facility that will be below
MCLs at a monitoring well for 90 percent of the possible cases. Both the EPACMTP and
its Monte Carlo adaptation have been extensively reviewed and supported for national
level risk evaluations. A probabilistic approach to evaluating maximum leachate
concentrations allows for user application with a minimum amount of site-specific data.
This allows for rapid and inexpensive screening of industrial waste facilities to determine if
more extensive site characterization is necessary. Such an approach will save users time
and money and is a definite improvement over a strictly deterministic approach.  

• In the Tier 2 analysis, the EPA proposes to use a neural network to approximate the
response surface generated by the EPACMTP ground water fate and transport model. The
Tier 2 neural network allows for input of site-specific considerations without having to run
the EPACMTP model. We highly indorse the concept of using a neural network to
approximate the response surface of the EPACMTP model. This is exactly the kind of
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application for which neural networks should be used.

• The artificial neural network (ANN)  training and testing demonstrate ANNs can
reasonably predict the general pattern of the EPACMTP model results over a range of
input parameters (e.g., see Figures A.3.5 and A.3.12).  However, as discussed below,
contradictory results and recommendations, problems with the neural network training,
and the non-intuitiveness of the input parameters decrease confidence in the code and the
ANNs predictive capability. 

• The process for selecting the training data set for training the neural network does not
appear to be optimal. The current approach is to choose equal frequencies of values over
regular increments of input values. This approach gives over emphasis to the tails of the
distributions of the input parameters. This has lead to several problems. First, the neural
network could not be trained when the total range of the input parameters is used. Thus,
input parameter values were restricted to range between the 10th and the 90th percentile.
This created the second problem. The neural networks were not trained in a range that
contained the infiltration rate assumed for the composite liner (3 x 10-5 m/yr), resulting in
unacceptable errors. Thus, the composite liner scenario is not included in the Tier 2
approach for this draft. It is possible that these problems can be alleviated through the use
of Latin Hypercube sampling. To be successful, such an approach may require a
redefinition of the performance quality criteria so that convergence of the neural network
is not overly influenced by the extreme edges of the response surface.

• A major difficulty with the construction of the neural networks in Tier 2 is the choice of
the seven parameters used in the prediction of the LCTVs. The seven parameters selected
to develop the neural networks were: waste area, infiltration rate, chemical-specific Koc,
chemical-specific decay rate, depth to water table, aquifer thickness, and distance to
monitoring well. There are two difficulties with this list. First, it would be better to use
fewer input parameters in the construction of the neural networks,. The large oscillations
of the neural network fits to the EPACMTP results (Figure A.2.3) indicate that there are
either too many inputs parameters or too many  neurons in the hidden layer of the neural
networks. Both of these problems could be fixed with fewer input parameters.  Second,
this list omits important parameters such as the ground- water flow rate (the product of
the aquifer hydraulic conductivity and the hydraulic gradient) which, along with the
retardation factor and the distance to the monitoring well, determines the contaminate
travel time. The ground-water flow rate is important because it effects both the time the
maximum concentration reaches the monitoring well and the time during which
contaminate degradation has to occur.

• The ANN predictions have a significant apparent scatter around the baseline model
predictions even with the log transformed concentrations of the plots’ y-axes.  We assume
the observed scatter of the ANN results is caused by over prescribing the number of input
regression parameters, similar to fitting a higher order polynomial with a typical least
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squares regression.  If this is correct, it may be possible to reduce the observed scatter by
combining selected input parameters based on the important physical processes the system
is representing.  We suggest grouping selected parameters together so that the total
number of training parameters is reduced.  For example, combining the surface area and
infiltration rate defines the mass flux of chemical to groundwater which should be one of
the most important parameters in predicting down-gradient concentrations.  Another
example would be to combine hydraulic conductivity, gradient, Koc and fraction organic
carbon.  As discussed in the following paragraphs, a further extension of parameter
grouping (to reduce the total number of parameters used in the ANN training) would be
the use of dimensional analysis to define the minimum number of necessary dimensionless
groups and use those dimensionless groups as the ANN training parameters.

• Another important consideration in the choice of optimization algorithms is that neural
nets are often ill-conditioned especially when there are many hidden units. Algorithms that
use only first-order information, such as steepest descent and standard Back Propagation,
are notoriously slow for ill-conditioned problems. Unfortunately, the methods that are
better for severe ill-conditioning are the methods that are preferable for a small number of
weights, and the methods that are preferable for a large number of weights are not as good
at handling severe ill-conditioning. Therefore for networks with many hidden units, it is
advisable to try to alleviate ill-conditioning by standardizing input variables and choosing
initial values from a reasonable range.

• It should be possible to improve predictability, over the most important range, by limiting
the range of DAFs over which the code is trained.   For example, for those constituents
which have Toxicity Characteristic Regulatory Levels, it is only necessary to accurately
compute DAFs up to approximately 100.  When the calculated DAF is greater than
approximately 100, the LCTV will be capped at the Toxicity Characteristic (TC) Rule
Regulatory Level.  Accordingly, for constituents covered by TC levels, the ANN could be
trained on DAFs ranging from 1 to 100 which would improve the predictability in the
range of importance.  A similar analysis could be conducted for the rest of the chemical
constituents found in the code as the maximum leachate concentration for these
constituents is capped at 1,000 mg/l.  Therefore, for these constituents it also should be
possible to further limit the range of DAFs over which the ANNs are trained.  

Response to Questions Raised in the Charge to the Review Panel.

Comment on the tiered approach to analysis of the WMU liner-design.  Does it serve the
intended purpose?

The tiered approach was designed to accomplish two objectives: (1) allow for the two
cases of sites with very little information concerning hydrology and for sites with a much
more complete characterization of ground water hydrology, and (2) facilitate modeling by
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those with little training in ground water modeling. The two-tiered approach presented in
the document accomplishes both objectives. The two-tiered approach is  reasonable in that
it permits users with varying degrees of site characterization data to obtain an immediate
analysis and recommendation.  Those with little site-specific data can use EPACMTP
model results based on national-level data that will result in LCTVs that would be
protective anywhere in the nation. Those with more site-specific data can input the data
into the appropriate neural network and obtain more site-specific LCTVs. 

The look-up table and neural network approximations used in the two-tiered  approach
permit the EPACMTP ground water code results to be used by a much larger number of
users than would be otherwise possible.  Thus the objectives of immediate analyses and
applicability by a large number of users with differing degrees of  existing site
hydrogeologic data  are met by the two-tier approach.

Given the assumptions for the Tier 1 evaluation, is EPACMTP an appropriate tool to use?  Are
the results appropriate for the type of analysis?

The EPACMTP is a sate-of-the-art ground water fate and transport computer code that
has received extensive peer review by the EPA Science Advisory Board and other review
committees. It simulates one-dimensional, vertically downward flow and transport of
contaminants in the unsaturated zone as will as two-dimensional or three-dimensional
ground-water flow and contaminant transport in the saturated zone.  Probability
distributions of input parameters were obtained from a nationwide survey of industrial
non-hazardous Waste Management Units and their surrounding hydrogeologic
characteristics .EPACMTP accounts for chemical and biological  transformation processes
and is capable of determining overall decay rates from chemical-specific hydrolysis
constants using soil and aquifer temperature and ph values. We believe that given the
extensive peer review that EPACMTP has undergone and its previous wide-spread
application by EPA, the current application of EPACMTP as the basis for EPAIWEM is 
appropriate.

Is EPACMTP an appropriate tool for generating the response surfaces modeled by the artificial
neural networks?  Is there another tool or modeling approach that would serve the purpose of
the Tier 2, location-adjusted evaluation?

Because EPACMTP is a mechanistic code that is run in Monte Carlo mode, it is an
appropriate tool for generating the response surfaces modeled by the artificial neural
networks.  Running in Monte Carlo mode permits the response surface to be readily
generated without manually inputting separate input parameters for each run as is required
in a typical mechanistic code.   

The Assumptions and Parameters Used to Develop the Tier 1 and Tier 2 Evaluations
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Comments on the assumptions and parameter ranges used for developing the Tier 1 national
Evaluations.  Are the assumptions appropriate for the type of analysis?  Are the parameter
ranges reasonable?

Tier 1 consists of lookup tables of the maximum leachate concentrations of chemical
constituents that, after dilution and attenuation during transport through the ground-water
pathway, would not exceed health-based concentrations at a monitoring well 150 m from
the waste management unit. These concentrations are derived by modeling with the EPA’s
ground-water fate and transport model EPACMTP. This approach is straight forward and
is appropriate for the current analysis and similar to approaches taken in the past. The
EPACMTP model has received extensive review by EPA’s Science Advisory Board and
has been approved for national-level risk evaluations, such as the current application.

The assumptions and parameter ranges used in Tier 1  appear reasonable.  However, we
have the following comments regarding these parameters and their associated ranges.

-The time period (10,000 years) during which contaminate migration is modeled seems
excessively long. No existing ground water model can produce accurate results over this
time period. However, if it is recognized that the Tier 1 and Tier 2 application of
EPACMTP is in support national-level risk evaluations and not site-specific ones, this time
period may be justified.

-There is some confusion possible with regard to placement of the monitoring well. In Tier
1, the monitoring well is located 150m downgradient on the plume centerline.  In Tier 2,
the monitoring well is located within plus or minus 90 degrees of the plume centerline and
at varying distances downgradient. This distinction is not made clear until page 45. It
should be discussed in the section on the conceptual model (page 5) or at least before
Table 3-4 an page 35. This table implies that both angle of well off plume centerline and
radial distance to downgradient well are stochastic variables. At this point in the
document, it has not been mentioned that there is a difference in the way Tier 1 and Tier 2
are evaluated.

-In Table 3-4 it is not mentioned that some of the parameters are on a log scale, while
others are not. For example, the median value of WMU area is given as 4.21 square
meters. This must be on a log scale.

-The hydrolysis rate (RLAM1) is identified as one of the most sensitive input parameters.
No mention of a chemical-specific biodegradation rate is made in the discussion of
sensitive parameters. We assume that this is because all transformation reactions are
represented by the same first-order decay process and that the hydrolysis rate constant
RLAM1 accounts for oxidation, hydrolysis, and biodegradation. It is not clear if any
biodegradation rate was assumed in the EPACMTP Tier 1 and Tier 2 calculations. This
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should be made clear in the text. The median and range of decay rates is not given in the
text. Table 3-4 gives the median value for the hydrolysis decay rate and tables 3-5 and 3-6
give decay rates ranging from 0 to 0.1 yr-1. Since this is an important parameter, the
document should give the range used to compute tier 1 and tier 2 output.

-It would be nice to know the relative importance of dispersion, dilution, and degradation
in the computation of the dilution/attenuation factor (DAF). This information would tell
WMU operators if it is worth obtaining site-specific biodegradation data for use in a  Tier
3 analysis to improve the calculation of DAFs.

- For the tier 1 analysis, different oxidation states were considered for chromium but not
for selenium and arsenic which are also commonly found in varying oxidation states in
groundwater.  Arsenic and selenium also exhibit different Kd values in different oxidation
states.  The approach is conservative, however, in that the given oxidation states are
generally more mobile.

- Hydrous ferric oxides will tend not to be found in reducing groundwater environments
which constitute a large proportion of sites.  This method for determining Kd values seems
best applied on a site-specific and not on a national tier 1 analysis.  Further, we have seen
a limited number of sites where hydrous ferric oxide (HFO) data are collected.  The range
of values (HFO) used for the modeling is most likely hypothetical with little data to
support the assumed values. 

- The MINTEQA2 approach used assumes that no adsorption occurs when no HFO is
present which is incorrect.  It would seem more defensible to forget the MINTEQA2
approach (except for site-specific Tier 3 analyses) and use the substantial number of Kd

values available for varying soil types to develop empirical relationships (as was done for
the Tier 2 analysis).  We assume the HFO contents were adjusted to conform to empirical
data in any case given the paucity of site HFO data.

- Using a divalent cation, nickel, to represent a monovalent cation, silver, is not
conservative.

- The assumption that the leachate pulse duration is the same as the operating unit’s life is
not conservative.  Leachate will continue to migrate from the operating unit after the
assumed operating unit’s life is over because of continued leaching of waste already
applied to the operating unit.  The assumption that remaining waste is either removed or
has negligible additional contribution to leachate is not conservative and is unrealistic.

Comments on the approach to estimating infiltration for the various WMUs and liner designs.  Is
the ... long-term liner maintenance?
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EPA has chosen to evaluate three types of liner scenarios, the no-liner, single-liner, and
the composite-liner scenarios. For the no-liner scenario and the single-liner scenario, EPA
used the HELP model to estimate infiltration rates. For the composite-liner scenario, EPA
computed infiltration using the liner leakage equation developed by Bonaparte et al.

We assume from Table 3-4 that the infiltration rate is the most sensitive of the input
parameters used in EPACMTP. It is therefore important to have good estimates of this
parameter. The document should give documentation for the choice of the range of
infiltration rates given in Table 4-1, 4-2, and 4-3 for the no-liner and single-liner scenarios.
It should also explain the differences for these rates in the tables for landfills, surface
impoundments, and Waste Piles. Why is the infiltration rate of 3.1x10-4 m/yr for the
surface impoundment composite liner ( Table 4-2) less than the infiltration rates for
composite liners in Tables 4-1 and 4-3?  In contrast,  infiltration rates for no liner and
single liner in Table 4-2 are larger than the corresponding infiltration rates in Tables 4-1
and 4-3.

The assumption of a single leak per acre for calculation of infiltration rates for composite
lines is questionable.  In a survey of 28 geomembrane-line units, Darliek (1989) found an
average of 10 leaks per acre.  Dr. David Daniel of the University of Texas has stated
(short course on clay and geomembrane liners, 1991) that the best quality control during
liner installation results in approximately one leak per acre while poor quality control
results in approximately 30 leaks per acre.  An approach that is more consistent with the
rest of the modeling would be to sample a range of geomembrane leakage rates using
actual data from studies (e.g., Darliek, 1989) as opposed to a single leakage rate.  This
would be more consistent with the Monte Carlo sampling of a range of values used for
other parameters.

The major point to be derived from the “Sensitivity Analysis of Composite Liner Leakage
Rates”(Appendix B) is not clear. It is not clear how Rip/Tears are treated in calculating
infiltration rates. This needs to be cleared up.

Three soil types were used to estimate infiltration.  The three soil types do not encompass
the range of soils and associated hydraulic parameters found in nature.  The soil textural
triangle contains 12 soil textural classes.  The three soils types selected encompass seven
of the twelve textural classes.  Representative particle size distributions for the three soil
types provide a high degree of variability in that they encompass a majority of the soils
found in the soil textural triangle.  The soils chosen, however, and their attendant
hydraulic conductivities do not address soils that are essentially sands or clays.  Soils
classified as loamy sands or sands will have less clay than the coarsest-grained soil used
(sandy loam) and will have hydraulic conductivities that may be an order of magnitude or
more higher than a representative hydraulic conductivity for a sandy loam.  Conversely,
the finest-grained soil selected (silty clay loam) will typically have less clay than soils
classified as sandy loams, silty clays or clays.  The silty clay loam may have a hydraulic
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conductivity an order of magnitude or more higher than the three soil types mentioned.  

Comments on the parameters used for the Tier 2 Location-adjusted Evaluation.  Are the
parameters appropriate to the type of analysis?  Are they parameters that would generally be
known about a site?  Should more parameters be included?  If so, which ones?  Should
parameters be deleted? 

Tier 2 consists of four separate artificial neural networks that have been trained to
simulate the results of EPACMTP. The neural networks allow for input of the seven most
sensitive site-specific hydrogeologic and waste-unit parameters and output leachate
concentration threshold values (LCTVs) . The use of neural networks as an approximation
to EPACMTP accomplishes two purposes: (1) it allows estimation of LCTVs by users
with no experience in running ground water models, and (2) it is vastly faster than a
complete run of the EPACMTP model. 

Based on the modeling that was conducted, seven parameters could be used to obtain
accurate predictions for each of the four waste types.  Using more parameters (12) high
correlations were obtained but the results were less predictive than with seven parameters. 
One anomaly appeared with the reduction of the parameters from 12 to 7.  An organic
carbon partition coefficient (Koc) was listed as one of the seven parameters but there was
no associated organic carbon number.  Organic carbon numbers were dropped in moving
from 12 to 7 parameters.  In a mechanistic sense, one needs an organic carbon number to
be able to use a Koc.  In a probabilistic sense, the higher Koc values will produce more
retardation than lower Koc values. 

We pointed out above that we believe the choice of the seven parameters used in the Tier
2 analysis is inappropriate. At minimum, several of the parameters should be combined. 

The ANN predictions have a significant apparent scatter around the baseline model
predictions even with the log transformed concentrations of the plots’ y-axes.  We assume
the observed scatter of the ANN results is caused by over prescribing the number of input
regression parameters, similar to fitting a higher order polynomial with a typical least
squares regression.  If this is correct, it may be possible to reduce the observed scatter by
combining selected input parameters based on the important physical processes the system
is representing.  

Neural networks can be thought of mappings from an input space to an output space.
Thus, loosely speaking, a neural network needs to somehow "monitor", cover or represent
every part of its input space in order to know how that part of the space should be
mapped. Covering the input space takes resources causing networks with lots of irrelevant
inputs to be behave relatively badly. When the dimension of the input space is high, the
network uses almost all its resources to represent irrelevant portions of the space.
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Unsupervised learning algorithms are typically prone to this problem. 

A partial remedy is to pre -process the input in the right  way, for example by scaling the
components according to their "importance". The current application rightly used this
approach. However, even when a network algorithm  focuses on the most important
portions of the input space, the higher the dimensionality of the input space, the more
training data will be needed to find out what is important and what is not. 

One possible solution for the IWEM neural network  would be to group selected
parameters together so that the total number of training parameters is reduced.  For
example, combining the surface area and infiltration rate defines the mass flux of chemical
to groundwater which should be one of the most important parameters in predicting
down-gradient concentrations.  Another example would be to combine hydraulic
conductivity, gradient, Koc and fraction organic carbon.  As discussed in the following
paragraphs, a further extension of parameter grouping (to reduce the total number of input
parameters used in the neural network and to make the parameter actually used more
useful) would be the use of dimensional analysis to define the minimum number of
necessary dimensionless groups and use those dimensionless groups as the neural network
input parameters.

- We are not sure of the ultimate importance of the parameters used in the deterministic
sensitivity analysis (page 35 of Technical Background document).  However, certain of
these parameters appear to be unrealistic. Additionally, there appear to be errors in certain
values.  Parameters in question are listed below.  

-  The percent organic carbon and fraction organic carbon do not correlate and one of the
values is off by an order of magnitude.  The ratio of organic matter to organic carbon
varies from soil to soil but generally lies in the range of 1.7 to 2.0.  Using the values in
Table 3-4 the ratio is 18.6.  If the organic matter content is correct, then the fraction
organic carbon number is an order of magnitude too low which will decrease the
probability that it becomes a sensitive parameter and is carried forward in the modeling
methodology.  

-  The hydraulic conductivity provided as a median value (3.2 m/yr) is very low and is
representative of a clay.  This hydraulic conductivity would not be considered a median
value.  Is this partly a reason why the hydraulic conductivity was excluded from the final
set of input parameters?  

-  The “median” Koc value (0.8) appears to be extremely low and will help ensure that
Koc is not a sensitive parameter to be carried forward.  Hydrophobic organic compounds
will invariably tend to have higher Koc values.  Following are some representative Koc
values for organic compounds often of interest (TCE = 130, PCE = 360, benzene = 80,
ethylbenzene = 1,100, naphthalene = 940 and PCBs (general) = 530,000.  It is difficult to
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believe this is a median value.

-  The WMU area (4.21 m2) appears extremely small.  Is this a log median value?

-  The unsaturated zone thickness (1.17 m) is quite shallow.  Given the impacts of a
capillary fringe, there would probably be surface water at such sites a good part of the
year.  Median value?

-  The aquifer thickness (1.182 m) is shallow.  Such an aquifer in most states would not
qualify as a drinking water aquifer.  Such a thin aquifer helps determine that the plume is
highly dependent on the infiltration rate.  Is this really a median value?  

-  When performing a sensitivity analysis on parameters it seems more appropriate to place
the well on the centerline.  Movement of the well off the centerline will increase the
probability that the contaminant plume misses the well and, thus, makes more parameters
insensitive.  

-  There is no horizontal dispersivity listed.  Without a horizontal dispersivity it will be
difficult for the contaminant plume to reach a well that is not on the centerline.  The plume
reaching the well becomes, in this case, highly dependent on the landfill area.

-  The distance to the downgradient well appears too large. Some discussion of this issue
is needed in the document. Tier 1 uses 150 m as the downgradient distance to the
monitoring well. Tier 2 treats downgradient distance to the monitoring well as a stochastic
variable with a median value of 427 m.

-  The decay rates used in Table 3-5 produce long half lives (from 6.9 years to
nondegradable) and reflect consideration of hydrolysis only with no biodegradation.  This
is a conservative assumption but may not be realistic.  

-  Page 41 lists 50th percentile areas for the four waste types that range from 405 m2 to
80,900 m2.  Why was 4.21 m2 used as a median value in Table 3-4.  These waste areas
support the contention that the area used in the sensitivity analysis was too small.

-The form of the probability distribution used in the sensitivity analysis (page 33 and Table
3-4) is not mentioned. Since the discussion in the document implies that all that was
known about the input parameters were the  high, low, an median values, we assume that
a triangular distribution was used. Is this the case? 

The Quality and Appropriateness of the Artificial Neural Network Tool
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Comments on the overall approach to developing the neural networks.  Was the program used
for training the ANNs appropriate?

Since EPACMTP has been previously sanctioned for such applications, the only difficulties that
can arise with the Tier 2 approach come from (1) incorrect design of the neural network, (2) too
many input variables in the neural network (3) inappropriate training of the neural network, or (4)
too large of an error between the neural network predictions and output of the EPACMTP model.
We believe that room for improvement exist in all of these areas.

 
Size of the Neural Network.   A neural network with a single hidden layer and N-1 nodes
is theoretically capable of approximating any response surface with N patterns. On the
other hand, such a neural network may be very difficult to train. There is no way to tell a
priori whether or not one or two hidden layers will give the best results. Simple response
surfaces can be fit easily with a single hidden layer; more complex surfaces require two
hidden layers to obtain good fits. General advice is start small because small networks
train faster. 

The Tier 2 neural networks were developed using a single hidden layer. The response
surface of the EPACMTP model is fairly complex. It is a nonlinear function with response
surface spanning several orders of magnitude. Since distributions of the input parameters
were not specified in the documentation, it is not clear if the EPACMTP function is
defined on a compact set; if not the problem is even more complicated. Thus, it may be
that more than one hidden layer is required to approximate this surface with minimal error.

Number of Input Variables.  As mentioned above, the curse of dimensionality causes
networks with lots of irrelevant input variables to be behave relatively badly. It is very
difficult to train a neural network with a large number of related input variables. Much of
the internal memory of the neural network is taken up learning redundant information.
General advice is to use the smallest number of input variables as possible.  This will speed
up training and decrease the prediction error.

The Tier 2 neural networks have too many input variables. We have pointed out above
several ways that this problem can be corrected.

Training the neural Network. Both Back Error Propagation and the conjugate gradient
method were used to train the neural networks. Back propagation is a first order method
which presumably would be used for initial training, while the conjugate gradient method
is a second order method which is more computational intensive and presumably would be
used . Page 55, Paragraph 3 implies that only conjugate gradient was used in training.
Documentation needs to be clearer on what combination of training was used to train the
Tier 2 neural networks,
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Standard Back Propagation is a euphemism for the generalized delta rule and is the most
widely used supervised training method for neural nets. Back Propagation can be used for
incremental training (in which the weights are updated after processing each case) but it
does not converge to a stationary point of the error surface. To obtain convergence, the
learning rate must be slowly reduced. This methodology is called "stochastic
approximation." However, the process can be tedious. Too low a learning rate makes the
network learn very slowly. Too high a learning rate makes the weights and error function
diverge, so there is no learning at all. If the error function has many local and global
optima, as is probably the case for the Tier 2 neural networks, the optimal learning rate
often changes dramatically during the training process. Page A-15 states that the leaning
rates for the Tier 2 neural networks were not modified during training. Training a neural
network using a constant learning rate is usually a tedious process requiring much trial and
error. 

Two methods that are effective at speeding up Back Propagation are Quickprop and
RPROP. Concise descriptions of these algorithms are given by Reed and Marks (1999), 
Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks,
Cambridge, MA: The MIT Press.  However, conventional nonlinear optimization methods
are usually faster and more reliable.

Error Between Predictions and Response Surface.  The neural network predictions
have a significant apparent scatter around the baseline model predictions even with the log
transformed concentrations of the plots’ y-axes.  We assume the observed scatter of the
neural network  results is caused by over prescribing the number of input regression
parameters, similar to fitting a higher order polynomial with a typical least squares
regression.  If this is correct, it may be possible to reduce the observed scatter by
combining selected input parameters based on the important physical processes the system
is representing.  

The following are specific comments regarding various aspects of the neural networks:

Page 12, Paragraph 4 states that neural networks can become “over-fitted”. This is a
neural network that produces excellent results with the training input data, but performs
poorly with data it has not seen before. The document states that this problem can be
avoided by careful choice of neural network size and the amount of training applied to the
neural network. This statement is incorrect. These variables have little to do with
preventing the network from becoming “over-fitted”. The only way to increase the chance
of predicting data that the neural network has not seen is the have  training sets that are
representative of the total range of model output. A neural network can only predict well
those model outcomes that it has been trained to predict. If representations of these
outcomes are not in the training set, controlling the network size and amount of training
will not improve the neural network performance on data it has not seen.
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Page 15, Paragraph 4 states that in training the neural networks, problems were
encountered when the extremes of the input parameter distributions were used as input to
the training. “Initial attempts to train on data sets that included the full 0th  percentile
to100th  percentile input parameter ranges were unsuccessful” (Page A-4, Paragraph 2).
Therefore, to produce the best possible predictive tool with broad applicability and
acceptable accuracy, the decision was made to generally train and validate the neural
networks using input values in the range of 10th to the 90th percentile. This is a serious
problem with the training protocol for the neural networks. 

The EPACMTP model results are highly sensitive to the location of the ground-water
well. In the Tier 2 analysis, both the radial downstream distance and the angle off-center
of the observation well are stochastic variables. This leads to situations where the lateral
edge of the plume may not reach to observation well. Thus the observation well would
show a zero concentration and lead to the calculation of an infinite value for the
dilution/attenuation factor (DAF). There is nothing wrong with this situation, but it is just
something to keep in mind. On page 5, the document states that there is a one-to-one
correspondence between DAF and monitoring well concentration. This is only true in the
deterministic case. In the Monte Carlo case discussed above ( where both radial distance
and off-center angle of the well vary), multiple locations of the monitoring well can lead to
the same calculated value of the DAF. In fact there will be an infinite number of well
locations with the same DAF. Again, this is not a problem because in the Monte Carlo
case, one uses the 90th percentile DAF as the measure of the amount of dilution and
attenuation that would likely occur. However, these points could be clearer in the text.

The selection of a 90th percentile DAF (for DAFs ranked from highest to lowest) as the
measure of dilution and attenuation is a policy decision. However, we note that the choice
of the 90th percentile is consistent with numerous other EPA analysis including the
proposed 1995 hazardous Waste Identification Rule (HWIR). This choice would be
protective in at least 90% of possible well locations (within the bounds set for well
locations) and therefore satisfies the EPA goal of being protective of the majority of the
population.

A serious omission in the documentation of the neural network development is how the
necessary one-to one correspondence between neural network input parameters and the
EPACMTP model output was established.  EPACMTP (run in Monte Carlo Mode) starts
with probability distributions for each input parameter and generates a probability
distribution for some desired output parameter, in this case the DAF. The 90th percentile
DAF was selected as the appropriate measure of dilution and attenuation.  Thus the
EPACMTP run in Monte Carlo mode sets up a one-to-one correspondence between the
probability distributions of its input parameters and the 90th percentile DAF. The purpose
of the neural network is to set up a one-to-one correspondence between its deterministic
input parameters and the 90th percentile DAF computed by EPACMTP. The document is
not clear on how this correspondence is established. 
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On page 13 the documentation states the trained neural network was used to predict the
EPACMTP output value (the DAF) as a function of combinations of EPACMTP input
values. This implies that the output of the neural network was a target DAF value. This
statement is also made on page 12, paragraph 3. Figure 2-3 also implies that DAF values
are the computed output of the EPACMTP model. However, on page A-7 of Appendix A,
the document states that the neural networks were trained to predict:
• the peak well concentration (log pk conc) and
• the maximum 30-year average well concentration (log avg conc).

It is important that the document be clear as to the output parameter(s) used to train the
neural networks. 

Page A-7 of Appendix A states that the peak will concentration was used to calculate the
Leachate Concentration Threshold Value (LCTV) for non-carcinogens and the maximum
30-yr average concentration was used to develop LCTVs for carcinogens. Page 5 and 6
state that the DAF is used to compute the LCTV. However, it not mention the
relationship between  monitoring well concentrations and time. This needs to be made
clear.

DAFs are computed using the peak well concentration or the maximum 30-yr average well
concentration. Thus, in the Monte Carlo case,  DAFs for different wells are computed
based on different travel times. This is ok.

We are not sure why it is necessary to compute and list DAFs ranging up to 106.  For
those constituents which have Toxicity Characteristic Regulatory Levels (Table 4.4),
generally, it is only necessary to accurately compute DAFs up to approximately 100. 
When the calculated DAF is greater than approximately 100, the LCTV will be capped at
the Toxicity Characteristic (TC) Rule Regulatory Level.  Accordingly, for constituents
covered by TC levels, the ANN could be trained on DAFs ranging from 1 to 100 which
would improve the predictability in the range of importance.  For these 39 constituents
(Table 4.4) , it does not matter if the DAF is 103, 104, 105, or 106; once the DAF is greater
than 102 the result (LCTV) is the same.  A similar analysis could be conducted for the rest
of the chemical constituents found in the code as the maximum leachate concentration for
these constituents is capped at 1,000 mg/l.  Therefore, for these constituents it also should
be possible to narrow the range of DAFs over which the ANNs are trained.  Again,
narrowing the range over which the code is trained will improve the accuracy of the ANNs
in the area of importance. 

Comments on the number of parameters, the range of values, and the combinations used for
training.  Is there a training method or approach that would enable inclusion of parameter
values spanning many orders of magnitude?
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The text states that twelve parameters were selected to develop the neural network but 13
parameters are listed in Table 3-7.

Dimensional analysis of the geometric, flow, and chemical parameters that govern the
model prediction of the DAF may be a useful tool to augment or enhance the training data
sets for the ANN. The Buckingham Pi Theorem states that any physical relationship can
be expressed in terms of independent, dimensionless products composed of the pertinent
physical parameters.  Using dimensional analysis, the general form of  relationships
between the quantities can be established and experimentation (i.e., model simulations in
this case) is then required to derive the specific coefficients relating the parameters.  
Dimensional analysis differs from other types of analysis (such as the current model
simulations used) in that it is not based on the fundamental principles of mass, energy and
momentum conservation.  Dimensional analysis is instead based solely on the relationships
that must exist between the pertinent variables because of their dimensions.  Dimensionless
parameters (derived from dimensional analysis) are widely used for a broad range
engineering design applications including a number of groundwater hydrology and mass
transfer applications. In terms of the application to a training data set for the ANN, the
appropriate dimensionless parameters may be used to reduce the number of independent
parameters, as well as the parameter ranges that need to be included in the training data
set.  In a sense, the dimensionless parameters are allowing the ANNs to start from a very
“intelligent” baseline when defining the most important parameters and corresponding
relationships that affect the model-predicted DAFs.

Typical state regulations require a groundwater resource protection standard along with
protection of existing supply wells.  Based on this implementation of regulations, it may be
more appropriate to use a training data set for the ANNs which places the well directly in
the centerline of the plume.  This may make the final IWEM results more compatible with
typical regulatory decision processes.  In addition it may provide a training data set which
covers fewer orders of magnitude and allows the ANNs to achieve a better fit to the
response surface.

The selection of parameters for developing the ANNs initially started with the following
parameters:  waste area, infiltration rate, Koc, decay rate,  product of percent organic
matter (unsaturated zone) times the fraction organic carbon in the saturated zone, product
of conductivity and gradient (the Darcy velocity), depth to water table, aquifer thickness,
angle of monitoring well off the centerline of plume and distance to the monitoring well. 
Based on initial testing and evaluation of the optimum number of parameters to train the
ANNs (presumably based on the degrees of freedom required to match the response
surface), a total of seven of the above parameters were selected to train the ANNs.  Two
of the parameters deleted, the Darcy velocity and the angle of monitoring well off the
centerline of plume, would seem to be very important to the ANNs predictive ability. 
Because the chemical-specific decay rate is included as a parameter, the Darcy velocity
which defines the time over which degradation would occur would appear to be very
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important.  The velocity is also used with the dispersivity to calculate the dispersion
coefficient in the transport equations (this parameter controls the spread of the Gaussian
distribution) and is expected to be important  One possibility would be to use the retarded
Darcy velocity as a training parameter.  This would effectively include the conductivity,
gradient, Koc and Fraction organic carbon as a single training parameter.  Another
possibility would be to include a dimensionless parameter based on the velocity, travel
distance and decay rate as a training parameter (possibly including the retarded velocity). 
As noted previously, it may be appropriate to develop the training data sets using cases
where the well is located on the centerline of the plume.  If not, it is expected that the
angle to the well location is an important parameter unless the waste areas are so large
that locations at 45 degree angles from the centerline are still within the bulk of the plume. 
Intuitively, one would expect that the angle to the receptor well may be more important
than other parameters included such as the aquifer thickness or the depth to the water
table.

Comments on the quality of the ANNs as described by the various criteria used.  Are there other
criteria that should be used to evaluate the quality of the ANNs?  Is the error between
EPACMTP and the ANNs acceptable in the context of the uncertainties associated with
groundwater modeling?

The criteria used, such as R2 values, plot, histograms, etc. were appropriate.  Based on the
limited result summaries seen, the quality of the ANNs appears good.  We question how
the data transformations have effected the evaluation of the ANNs effectiveness using the
criteria.  For example, the coefficient of determination, R2, will be increased by using log-
transformed data.  It is unclear whether the predicted and measured concentrations would
have exhibited a R2 that met the stated acceptance criteria (R2 of 0.9) without
manipulating (transforming) the data.

The term “coefficient of determination” is used in the text without prior definition, for
example on Page 59, paragraph 4. The definition is given on Page A-19, but appears
incorrect and terms are not defined.

Running the code produced contradictory results and recommendations.  For example, in
certain situations the Tier 2 analysis resulted in higher DAFs for the No Liner scenario
than for the Single Liner situation.  Because of this, depending on initial leachate
concentrations, a chemical would be protective without a liner and not be protective with
a liner.  In other words, a higher LCTV was achieved under the No Liner than with the
Single Liner Scenario.  These results contradict reality and diminish confidence in code’s
predictability.

Comments on the various approaches used to filling in the response surface for the purpose of
getting a better fit between EPACMTP and the ANNs.  Is there a method for better incorporating
the extremes of the parameter distributions?
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One of the biggest limitations of the code is the assumption of homogeneity.  Typically,
aquifer materials are deposited in stratified layers. Because of aquifer stratification (non-
homogeneity), many contaminated aquifers have strongly stratified plumes (i.e. the plume
extends over a discrete interval of the aquifer thickness).  Currently the model training
data sets use a 90th percentile of the aquifer thickness in the range 80 to 90 meters. 
Although there are certainly a number of aquifers which are this thick, most aquifers have
stratigraphic layers which effectively confine the contaminant plume intervals to layers
which are on the order of 3 to 10 meters thick. This observed plume distribution is
presumably the result of aquifer heterogeneity which typically is not represented in most
groundwater modeling applications.  In order for the DAF factors to be conservative it
may be prudent to consider limiting the aquifer thickness to a typical range of plume
thicknesses that have been observed in many cases (i.e., artificially force the model results
to limit the plume thickness by constraining the aquifer thickness).

Comments on the approaches to selecting the training, test, and validation data sets.

The process for selecting the training data set for training the neural network does not
appear to be optimal. The current approach is to choose equal frequencies of values over
regular increments of input values (Page A-9, Paragraph 2). This follows the advice of
Swingler (1996) that a training data set should contain a similar number of samples from
different “classes” of data that the neural network should learn. However, in training a
neural network over the range of the distributions of the input parameters such a
procedure will result in an over representation of infrequent values. It would seen more
reasonable to use a Latin Hypercube procedure, which selects samples relative to their
frequencies, to sample the input parameter distributions to construct the training data set.

The histograms of input values used in training (Figures A.2.6 and A.2.7) do not appear to
show equal frequencies for each value over the range of values. There seems to be too
much emphasis on using the pure “star-point” distributions.  If the “after training” matrix
in Figure A.2.6 is any indication, the training set used for LOGAREA was nowhere near
uniform. As the sensitivity analysis pointed out, LOGAREA is one of the most important
parameters. With so little of the training space used in training, one wonders if training can
be efficient. If obtaining equal frequencies fir the training input values is deemed
important, we would suggest choosing the training input values by sampling randomly
from a uniform distribution of the range of input values. We believe that this is an
important point since a neural network can not learn to predict a portion of the response
surface that it has not been trained on.

In general, it appears that the neural network predictive capability would be improved
through further training with additional data. The training data sets appear too small and
not representative of the entire range of input parameter values.

The modeling tool used state-of-the-art methodologies to emulate the output from the
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EPACMPT code.  The tools it used in conjunction with the methodology appeared to be
well thought out and appropriate.  The intended purpose was met in that a high degrees of
correlation was obtained between the EPACMPT outputs and the predictions made by the
IWEM model.

The Overall Quality of the Software and Documentation

Comments on the ease-of-use and logic of IWEM.

The documentation is more than sufficient.  The program is user friendly and intuitive.  It
would be possible to run IWEM and interpret the results without any documentation.

Comments on the nature of the instructions within the program.  Are they clear and easy to
understand?

Very user-friendly program.  We ran the program without reading the documentation and
it was easy to follow.  The program flow was logical as it lead you from one input to
another.  A user would need minimal computer and modeling experience to successfully
execute this program.

Comments on the layout of the user-interface screens.  Are all easy to use and read?

The user-interface layouts are easy to read and use.

Comments on the presentations of results.  Are they consistent and easy to understand?

Comments on the ease of installation and file manipulation (saving and retrieval?)

The program was easily installed.  The file saving and retrieval operations were easy to
execute. 

Comments on the logic and clarity of the documentation.  Were any important points,
assumptions missing or inadequately explained?

The documentation is easy to follow.  Given the ease of use of the program, the
documentation provides little benefit.

Comments on the structure of the user’s guide.  Is it easy to follow?  Are there any
inconsistencies with the software?

The User’s Guide is easy to follow.



36

Comments on the readability of the user’s guide.  Can it be used by one without a lot of
groundwater modeling experience?

The User’s Guide is readily understood and could be used by one without previous
groundwater modeling experience.

Comments on the structure of the Technical Background Document.  Is the modeling approach
and logic used for development of the ANNs clear?

The modeling approach and logic used for development of the ANNs is clearly presented
in the Technical Background Document. 

Is there sufficient explanation concerning the training of the ANNs?  What aspects of the
training should be described?  What training parameters and training data need to be
presented?

The ANN training methodology is presented in sufficient detail to understand the logic and
the process.

Comments on the readability of the Technical Background Document.  Is it written at a level
appropriate for someone with some groundwater training and modeling experience?

The Technical Background Document is easy to read and the logic behind the modeling
efforts is easy to follow.

Typographical errors: We never looked for typographical or grammatical errors but noted the
following errors in the documentation.

TECHNICAL BACKGROUND DOCUMENT:

Page 45, second line; should be while not wile

Page 57, second line; should be “ ... data it had not...” not as written “....data is had not...”

Page A-40, last line, second paragraph; should be ...values are high and concentrations are low.   

APPENDIX B

ORIGINAL COMMENTS FROM DONNA RIZZO
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REVIEW of Industrial Waste Management Evaluation Model (IWEM)

4) Methodologies and Assumptions used in the Groundwater Pathway Modeling

Overall, this is a very good first-generation groundwater pathway model.  I believe the
work presented to be thorough and accurate. My major concerns lie with the written
portion of the Technical Background Document (TBD) – specifically the presentation of
the Tier 2 neural network model.  Although, I believe the IWEM software and the
underlying models to be of high quality and technically sound, the overall organization,
and re-definition of standard artificial neural network (ANN) terminology in the TBD,
detract from the understanding and the credibility of the underlying models.  Two
overall suggestions for a second-generation Tier 2 ANN model follow.  More specific
revisions to improve the quality and understanding of the TBD, and as a result, the
underlying Tier 2 ANN model may be found in item 3 below.

The authors should provide some justification for selecting the method of
backpropagation (specifically NNModel version 3.2). On page 53, (third paragraph, first
sentence) the authors state, 

“Therefore, the first step in developing neural networks to approximate EPACMTP was to determine an
appropriate set of EPACMTP input parameters that would be used to predict the outcome of EPACMTP,
the concentration of a chemical in a downgradient ground-water well used for drinking water and its
inverse the DAF.”

The first step should be the selection of an ANN (computational tool) to address the task at hand. 
Although the developers have selected the method of backpropagation to address the problem of
approximating the EPACMTP, other algorithms exist that might have been more appropriate for this
particular task. Backpropagation is a gradient descent method that notoriously requires long training
times and is prone to converging to local minima instead of finding the global minimum error surface. All
training algorithms that make weight adjustments to continuously reduce the objective function are
prone to this problem of local entrapment. Although backpropagation is the only ANN algorithm
provided by Neural Fusion (1998), other algorithms exist that would have greatly simplified the lives of
the developers. If one of the goals was to find an algorithm that would approximate processes in the same
manner as regression analysis, then the developers may want to consider the General Regression Neural
Network (GRNN) in a second-generation model. The GRNN algorithm has its theoretical foundations in
regression analysis and requires very little training time. 

If the developers choose to remain with backpropagation, one additional suggestion for a second-
generation model is to implement modular ANNs (i.e. have separate ANNs for ranges of data where the
training patterns appear to compete with each other). For example, since the significance and sensitivity
of the input parameters change greatly for MWUs with low monitoring well concentrations and high
monitoring well concentrations (or alternately low and high infiltration rates), separate ANNs might be
considered for these two regions. This would not only help the predictive capability of the
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backpropagation networks but it would greatly reduce training times. 

In addition, at the bottom of page A-29, the authors state, 
“In general, the neural network predictions for input parameters outside the 10tth  to 90th  percentile
values will likely be less accurate than for input values within this range.”  

This is true. In fact, the neural network should not really be used to predict values in a
range that it has not been trained on. When running the model, the user is warned that
he/she is outside the input parameter range and asked if they would like to proceed. This
is a nice feature of the IWEM graphical user interface. However, if it necessary for the
ANN to make predictions outside the 10th  to 90th  percentile range, then a second-
generation model should include separate ANNs that are trained on data in each of these
ranges (0th  to 10th  and 90th  to 100th ).

Performing principle component analysis of the data prior to selecting the subset of
input parameters would also be advantageous. This would help justify why the
backpropagation network did not perform well, when all 10-12 input parameters were
considered, and identify additional regions of the input parameter space in which to
modularize the ANNs (create separate ANNs).

Despite the hardships encountered when training backpropagation algorithms, I believe
the selected algorithm to be appropriate for the problem at hand and the end product
(given the size of the problem that was undertaken) to be commendable. As stated above,
my greatest concern lies with the manner in which the TBD is organized and the written
description of the Tier 2 model and its training procedure. Confusion exists throughout
the document with regard to definitions and terminology used to describe the Tier 2
ANN.  Specific recommendations are provided in item 3 below.

5) Utility of the Software

The IWEM software package is very intuitive and the graphical interface is extremely
user friendly. In my opinion, most users will be able to install and run the software
without reading the IWEM Users’ Guide. 

The IWEM Users’ Guide is both concise and well written. In fact, reading the
introduction (section1) of the IWEM Users’ Guide prior to reading the TBD, would have
greatly improved the overall flow and understanding of the TBD. With the exception of
one remark (below), all comments and suggestions regarding this Guide and software are
minor and can be found in the margins of the hard copy.
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On page 5 of the IWEM Users’ Guide the authors state, 

“Therefore, where appropriate in Tier 1 and Tier 2, EPA used ranges of parameter values that result in
a high estimate of risk to ensure the protection of groundwater.” 

Is this high estimate of risk a result of selecting a wide range of parameter values or the
result of a conservative range of parameter values?

(Note: I do not feel qualified to judge whether the ranges of values provided in the
IWEM Model (also in Tables 4.2-4.5) are sufficiently large to accommodate most existing
and proposed WMUs.)

6) Recommended Approaches for Revision and Improvements of the “ Technical
Background Document: Industrial Waste Management Evaluation model (IWEM),
Ground Water Model to Support the Guide for Industrial Waste Management”

I. Recommendations Re: Improving the Overall Flow of the TBD:

1. The two-tiered approach (currently described on page 17 in section 3.0) should be
presented before section 2.3 – Development of Neural Networks to Emulate Ground-
Water Models (see pages 9-16). Currently, details of the Tier 2 ANN used to simulate the
results of the EPACMTP (including specific input and output parameters) are described
before the user has been introduced to the two-tiered approach. 

2. A very nice introduction and description of the four different waste management units
(WMUs) of concern: landfills, surface impoundments, waste piles, and land application
units, is presented on page 1 of Appendix A. This should be done much earlier in the
document (i.e. prior to the description of no-liner, single clay liner, and composite liner).

3. (p. 22-28)  The general description of the four graphs used to document the ANN
training process using specific data, is difficult to follow. This section needs to be re-
written.

4. The text at the bottom of page 64 and the top of page 65 explains that the Tier 1
National Evaluation does not require site-specific data and that the ANN approach
includes a Location-Adjusted Evaluation.  The specific goals of each Tier should be
introduced prior to this description.

5. The write-up of sections 3.2 and 3.3 appear to have gone through much more review
and revision. These sections are nicely written and the model assumptions are clearly
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defined. Moving this material earlier in the document would greatly help the flow.
Perhaps repeating the first 7 pages of the IWEM Users’ Guide at the beginning of the
TBD would help the overall organization of the document.

6. (page A-7, first paragraph, last two sentences)  

“Modeling the landfill scenario with EPACMTP assumes an essentially steady-state scenario in which
the organic carbon partition coefficient (KOC) has little or no effect on the output. Therefore, the landfill
neural network did not consider KOC as an input parameter and did not use the average peak 30-year
concentration as an output parameter.” 

The latter part of this last sentence (in bold above) does not logically follow from
anything stated in the previous sentence (or paragraph).  How does a steady-state
scenario with KOC having little or no effect on the output, justify the elimination of one
of the ANN output parameters (max 30-yr ave. well conc.)?  Was this output parameter
eliminated due to complications in training? This explanation needs to be clarified.
(Note: Comments are being addressed in chronological order. There are two or three
places near the end of the Appendix in which statements (that appear illogical earlier in
the document) are addressed. For example, the justification for choosing only one output
parameter for the landfill neural network is clarified in the first paragraph of subsection
A.3.1.1 on page A-32. This should be stated much earlier in the document. Other places
where similar confusion occurs are noted below.

II. Recommendations Re: ANN Terminology – specifically focussed on Training and
Validation

Training

1. The authors appear to be confusing the terms “training” data sets, “test” data sets, and
“validation” data sets throughout the TBD. Near the bottom of p. A-19, the authors
state, 

“The goal for each neural network was to reach an R2 -value greater than or equal to 0.9 for both
the training data set and the test/validation set.”  

Does this imply that the “test” and “validation” data sets are the same? If so, this
appears to contradict earlier discussions of these two data sets (see for example, the
description and labels “training/testing” and “validation” used in Table 5-1). Also, the
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R2  value associated with surface impoundments is 0.825 – this is not greater than
the value 0.9 presented on this same page.

Item 4 on the bottom of this same page states, “the R2 -value for the training and
validation set decreased”.  It is not possible for both of these R2 values to decrease
simultaneously.  Once training has been performed and an acceptable R2  value has
been achieved, the ANN weights are fixed before validation begins.  This is the
traditional definition of a validation data set. 

2. (page A-2) The R2  value during training should reflect the true value obtained for all
the training patterns - not a “test data set of predetermined input parameter
combinations” used to optimize the generalization capability of the ANN. The
traditional use of the term “test data set” or “validation data set” is a set of data used
simply for the purpose of testing the predictive capability of the trained ANN. 

Although the Neural Fusion (1998) NNModel does have a slightly different definition
for “test data set”, this definition is not common knowledge. As I understand it, these
strategically predetermined data points were generated to improve the generalization
capabilities of the training data set.  In general, this is simply a part of the process
necessary to generate a training set that 1) has an adequate number of data points, and 2)
adequately spans the range of data values being used for prediction. On page A-8 the
authors state, 

“Based on the results of testing the neural networks, in some cases test data were transferred into the
training data sets.” 

This is what should be done to create a training set.  The training set should be ideally
generated (balanced, general, accurate, etc.). The authors should omit references to
“initial” training set and simply describe the training set used to produce the results of
this investigation.  If what the authors are calling a “test” data set and “validation” data
set are later used to “train” the ANN (i.e. fix the internal weights before using the
network for prediction purposes) they should not be referred to as “test” and
“validation” data sets!  They are then part of the “training” set (and should be a part of
the data used to obtain the R2  value for training).

In my opinion the authors should remove all references to the phrase “test” data (when
referring to data that was later incorporated into the training data set), and use the word
“validation” or “test” to refer to the separate unbiased data used to test the trained ANN.
There are well-documented ways to generate test cases. The method(s) used for
identifying good “training sets” for this investigation should be discussed in the
Appendix.
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However, if the authors choose to use Neural Fusion’s definition of “test” data set, a
description of the type provided on the bottom of page A-32, 

“The landfill neural network consisted of a training data set and a test data set, a second training data
set to cover more data space in the input variable space, and finally, a validation data set to evaluate the
performance of the final neural network.”

placed earlier in the document is mandatory. It will greatly reduce some of the confusion
between “training”, “test”, and “validation” data sets. It is not until page 56 of Appendix
A that the authors finally state that the initial training and test data were combined into
one data set.  It is important to explicitly state this earlier in the document.
However, even at this stage in the document, the reader is never told which of these
“training/test/validation” data sets were used to train the neural networks used in the
IWEM (i.e. used to fix the weights of the ANNs before they are used for validation
and/or predictions). If additional “test” data sets are used in training the weights of these
ANNs, then these “test” data sets should not, in my opinion, be called “test” or
“validation” data sets.  As far as the end user is concerned, they are part of the “training”
set and have been used to adjust the internal weights of the final ANN used for
prediction purposes. 

3. (page A-8, second paragraph) In describing the derivation and range of the test data
set,
I believe the authors are again confusing “test” data sets with what they call “validation”
data sets earlier in the document (see page A-2 and the overview of Neural Network
Training and Testing Process Figure A.2.1).

4. (pages A-51 and A-52) Figures A.3.9 and A.3.10 are identical for final and test data
sets.
Is this accurate?

5. The 95% confidence interval graphs for the training and test data sets (pages A-78 and
A-79) are identical (including the slope and intercept of the regression lines to four
decimal places). If this is the case, then the test data set is not a valid test data set and
should not be labeled as such.

Validation

1. (page A-29, first paragraph, last sentence) 

“The identification of a neural network with the best generalization is better determined with a measure of
the test-sample error (residuals of the test or validation data sets), than with the training-sample error
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(residuals of the training data set).” 

Are the authors now implying that the test and validation data sets are the same? Or are
they implying that there are three measures of error (training, testing and validation)? If
the latter is true, then the R2 values for all three data sets should be shown
somewhere in this document. (Note: only two have been shown in Table 5-1 on p. 26  –
the R2 value for the training data set and the R2 value for the validation data set.)

2. (p. A-35) 

“The landfill neural network, the first neural network developed out of the four, was not integrated with
an additional fully random validation data set.”

Again, by definition, “validation” data sets should be an independent, unbiased set of
random data points and should not be integrated into the “trained” neural network. The
hidden weights of the neural network should be adjusted during training and fixed prior
to validating the ANN model. If the developers want to integrate these “validation” tests
into the end product (four trained neural networks) this is fine, however, it should not
be described in this manner (part of the testing and validation) in this document.

In addition, in the above statement, the authors refer to the validation data sets as fully
random and in other places of the document as sequentially random and essentially
random. These adjectives do not instill confidence in the reader that the data sets are
indeed random. If they are random, remove the adjectives. If they are not random,
explain why.

3. (page A-59) If the 1144 validation data examples were appended to the training matrix
(i.e. used to train the internal weights of the final ANN) they should not be referred to
as “validation data examples”.

Other Recommendations

1. Several of the definitions contained in the glossary are not accurate. For example, the
sentences used to define the backpropagation method are not sufficient. These statements
are true of many ANNs and do not provide the reader with a definition of
backpropagation. Many of the other definitions are too general; while others are specific
only to the method of backpropagation (see additional remarks in the hard copy).

Also, the document should contain a statement somewhere (in the introduction?)
indicating that a Glossary exists.
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2. (page 10, last paragraph) Given the very general nature of the overview provided for
ANNs, the authors should probably delete the sentence -  

“The hidden node values are analogous to regression equation terms and weights are analogous to the
coefficients in a regression equation”. 

Although the attempt to “de-mystify” ANNs and discuss the analogy between many of
the connectionist ANNs and classical regression analysis is admirable, for readers with
experience in the field of ANNs, this sentence will instill skepticism.  This sentence is
true of many ANN algorithms, but the theoretical foundation for each algorithm differs. 
In addition, the particular algorithm selected in this study is Backpropagation (Note: the
reader does not know this until page 55, section 5.2).  In general, backpropagation is a
gradient decent method, and although under certain assumptions and constraints it is
analogous to classical regression analysis, there are many other ANNs with theoretical
foundations more rooted in these classical regression techniques.

3. (page 12, first sentence) The authors are confusing ANN “architectures” with “types”
of ANNs. The multi-layer architecture depicted in Figure 2-4 is simply that – a multi-
layer “architecture” (as opposed to a single-layer architecture).  The reference to radial
basis functions and self-organizing maps is out of place in this paragraph.  Both of these
“types” of ANNs are capable of having the same multi-layer architecture depicted in
Figure 2-4. It is true, as the authors state in the second to last sentence of this paragraph,
that the MLP is the most successful and widely used neural computing tool.  However,
the web site http://www.spss.com cited by the authors is referring to architecture and
not types of ANNs.

4. (top of p.59) The authors are confusing the terms “data sets” with “data points”
(traditionally known as data patterns or data vectors).  I believe that line 1 of Table 5-1
(mislabeled Table 5-7 in text) which currently reads,

 “Number of training/testing data sets”, should read “Number of training/testing points (or

patterns)” 

where a training point (or pattern) is defined as the vector (single row of the matrix
described on p.57 and shown in Figure 5-2) containing both training input
parameters (log KOC, log area, SINFIL, DSOIL, ZB, log radius) and the
corresponding output parameters (log ave. conc., and log peak conc.) predicted using
EPACMTP. The number of data points used for training and testing should be
indicated in this Table.

However, if the authors really intend for this line to read “training/testing sets” then the
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number of points or patterns used in each set should be defined to provide the user with
some degree of confidence in the size or breadth of the training sets.

In addition, I believe the line identified as “Number of validation data sets” should read
“Number of validation data points” where a data point should be defined as one set
(row vector) of inputs and corresponding outputs spanning the training data space.

5. (page 63) The authors are confusing the R2 values for training and validation.  The
value should read 0.825 and not 0.992.

6. (page A-14) The second bullet reads- 

“Maximum number of hidden neurons and hidden layer addition".  

Should the “hidden layer addition” read “the addition of hidden layers”? The same
confusion between layers and neurons exists on p. A-17 (middle of the page, first bullet)
“Hidden layer addition: Fixed # of hidden neurons”.  My understanding is that the four
ANNs developed in this work used one hidden layer and a different fixed number of
hidden neurons for each of the four networks. Is this assumption accurate?

7. (Figure A.3.4, page A-39) The test data should span (be balanced over) the entire range
of values used for training the network. The measured and predicted DAF values (see
Figure A.3.4) are clustered in the ranges between 0 and 1 and around 3. Is there a reason
for this? How does the user know that the R2  values are not ‘selectively” high? Are
the R2 values lower for test data that are more representative of the entire range of
data values?

Also, the 95% confidence interval graph (PI-Graph) is the most informative/useful of the
tools shown in this document for purposes of evaluating the neural networks. Why are
these graphs not shown for the validation tests of each network?

8. (p. A-45) Item 5 and the last paragraph on page A-45 summarize everything that was
stated in the previous two pages. The authors are making the discussion of “selecting
training data” much more complicated than it has to be.  These two pages could be
condensed into one or two paragraphs.  (All references to “tallest and shortest
neighboring columns” and “no columns” should be removed and replaced with
references to “ where the frequency distributions are high”, “low”, or where “data does
not exist”.)

9. (pages A-54 and A-55) Why show only partial validation results in tabular form?  Why
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not use the same 95% Confidence Interval Graphs that were used for testing and show all
of the validation data?

10. (page A-17, middle of the page, second bullet) “Stop network on criteria: None” Does
this bullet imply that the network convergence is based solely on the maximum number
of iterations (or what the authors refer to as “total counts”) and not some tolerance
criteria such as a root-mean-square error value? If yes, this is important and should be
explicitly stated.

11. (page A-23) The authors discuss the tolerance (acceptable error of the total error)
being used as a criteria to end the training process, however, the authors also state in the
last sentence of this same paragraph;
 

“The tolerance can generally be used as a training stopping point. However, this option was not
applied to the development the four neural networks.” 

Why? What is the acceptable error used in this work, and the tolerance level at the end of
each training process?

12. (page A-40) 

“Interrogation of the landfill neural network….…showed the neural networks ability to predict output
values close to the desired EPACMTP output values for most of the data samples, especially for low
range DAF values (1-1000).” 

This statement doesn’t appear to correspond to the results of Figure A.3.5 on page 40(?).

14. (page A-43, Table A.3.4) Why are there two columns in Table A.3.4 entitled “CMTP
runs” and “RUNS used”? Does this imply that all of the “runs” were not used?  If so,
why not?

III. Other Recommendations:

1. Explicitly state that soil type and geographic location are considered when using the
IWEM software. If one reads this document prior to running the software, the
connection between infiltration rates and soil properties is not clear.

2. (page 15) In the first paragraph of section 2.5, are the location-specific data different
than the input parameters used (and/or listed on p.13) to train the ANN? The use of the
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term location-specific data and site-specific data should be defined (and why not use the
same term throughout the document?). In addition, the sentence in the second paragraph
– 

“Thus, the Location-Adjusted Evaluation allows the user to instantaneously evaluate a number of site-
specific considerations without having to run EPACMTP or another ground-water fate and transport
model” 

is confusing. The reader is assuming at this early stage in the document that the ANN output consists of a
single DAF estimate and not the evaluation of a number of site-specific considerations.

3. On page 53, (third paragraph, first sentence) the authors claim that neural networks are used to
approximate processes in the same manner as regression analysis.  This is true of some neural networks
and although many ANNs are evaluated against classical regression techniques, this does not apply to all
networks.

4. (top of page 54) The authors make reference to “ten to twelve” (depending on the WMU of interest)
parameters that were ranked as the most sensitive parameters for the majority of modeling scenarios for
the two-tiered approach” and then state that “10 EPACMTP parameters were selected to develop neural
networks”.  The box on the same page claims, “the Agency identified the top 12 most sensitive parameters
for Industrial solid waste modeling scenarios” and then states, “of the top 12 parameters, 7 were identified
that represent the most sensitive”. This should be re-written (see comments on page 54).

5. (page 55, section 5.2) The authors finally reveal that the ANN selected for this investigation is a
“feedforward, backpropagation neural network with one hidden layer”. This should be revealed much
earlier in the document, as references to the back-propagation of errors during training would make more
sense. 

6. (p.56) A figure similar to this would be helpful for each of the four neural networks developed in this
work, since each network contains a slightly different set of inputs and outputs.  If the reader thoroughly
reads Appendix A, they would realize that (three?) of the ANNs posses two output values (log10 ave.
conc., and log10 peak conc.), however, at this point in the document, the reader has been told that the
output for each network contains a single groundwater well concentration converted to a DAF value.

7. (pages 60-61) Use different symbols/notation to distinguish between log peak concentration output
generated by the ANN and that predicted by the EPACMTP model.

8. Note that – “the maximum 30-yr average well concentration (log ave. conc.)” (last
bullet, middle of page A-7) is not the same as the “average peak 30-year concentration”
mentioned in the middle of the same page. 

9. (page A-15) The number of eons doesn’t really “optimize” training time.  It simply
cuts down on the amount of data that is saved, presented, and/or printed.
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10. (page A-27) The two graphs of Figure A.2.8. should be plotted on the same axes (in
the same format that was used throughout the remainder of the document); and more
than three data points should be used for illustrating the predictive capability of the
EPACMTP. How was the neural network (used to produce the curve on the right hand
side of Figure A.2.8.) trained? (on what data? how many data points? for what MWU?
number of hidden nodes? convergence criteria?)

11. (page A-30) 

“Preliminary analyses indicated that when values outside the training range (0th  to 10th  and

90th  to 100th  percentile OSW) are input to the trained neural networks, the neural networks
recognized the value was out of the range of the input values.” 

The backpropagation algorithm does not have a feature that enables it to recognize
outliers or out-of-range input parameters.  This is a very nice pre-processing feature of
the IWEM graphical interface and should not be attributed to the ANN. In fact many
references to the neural network method could be changed to the more general “Tier 2
model” as is done in the IWEM Users’ Guide.

12. Table A.2.7 on page A-31 is more confusing than helpful.  What needs to be said is
described in the last paragraph on page A-30.

13. (page B-3) The equation that computes leachate flux through a hole in the
geomembrane for which there is poor contact between the geomembrane material and

the low-permeability soil, should be  and not .

14. (p. B-17) The authors refer to “Data from the Florida study indicate…..”
What Florida study?

15. (page B-9 through B-13) Figures B-1, B-2 , B-3, B-4 and B-5 are a bit confusing.  Since
the tests conducted consisted of “no holes” or “1000 holes” and did not consider
intermediate ranges, a table might provide a better format for presentation of the results.

Contact No holes 1000
holes

Clay liner

Poor
Good
Perfect

Leachate rates
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16. (Appendix C) Axes on all the Figures should be labeled. Figure C-2 is identical to C-
11.  Should Figure C-2 contain histogram information for the infiltration rates with a
single clay liner for landfills instead of waste piles?

APPENDIX C

ORIGINAL COMMENTS FROM LEAH ROGERS
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Review of EPA Industrial Waste Management Evaluation Model (IWEM)

Contents:
A. Overview of Review
B. Users' Guide to IWEM EPA530-R-99-002
C. IWEM Interactive model
D. Technical Background Document EPA530-R-99-002 (ANN Background)

A.  Overview

Overall I believe this is a well-planned and executed project which
should be of considerable use to those designing, approving, and evaluating
facilities for handling industrial solid waste.  The text has a good flow
to it with concise description.  The IWEM software is straightforward to
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use, fast calculating and well documented.  The underpinnings of the ANN
formulation are carefully described and appropriate to this application.
In the following sections I make suggestions that may help users to more
easily grasp what has been done on this project as well as document areas
where I would have appreciated some clarification. In particular, there is
a good level of ANN training complexity and thoroughness. Congratulations
to those who have had the fortitude and discipline to carry out such an
ambitious vision.  This is a well-formulated, proactive outreach by EPA,
which employs the sophistication and expertise of the combined fields of
subsurface transport modeling, uncertainty analysis, and ANN technology.
This outreach effort is packaged in a way that can be useful to those who
do not have such a range of expertise but are in need of such insights.

B.  Users' Guide to IWEM EPA 530-R-99-003

Introduction
One aspect that may be helpful to include is a definition paragraph on
what a waste management unit is and specifically what the four types
considered by the Tier 1 and Tier 2 analyses are.  The four types are
listed on page 2 but clarification of what distinguishes these units from
each other and references to where they are defined in more detail would be
useful.

The third paragraph is a good explanation of who will be likely users of
the IWEM computer program.  Another interesting aspect of motivation that
could be included here is a brief discussion of economic issues.  For
example, why don't we use the most conservative liner for a WMU because
prevention of contamination is often less expensive than remediation?  What
is the relative cost of these liners or how much difference in cost is
there between say between a single liner and a more  conservative composite
liner. What have been some of the environmental and economic consequences
of liners that have failed or overdesign of liners?

Table 1.1 page 4
What are the assumptions about the range of permeabilities of the single
clay liner and composite liner?  Perhaps there could be a pointer here to
references about this issue.

Pg. 5: Note not all systems use report generation interchangeable with
printing of results.  See discussion below pg. 38 & 60.
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1.3 2nd paragraph: "EPA used ranges of parameter values that result in a
high estimate of risk"è how high?

Pg. 6:  Good clarification of assumptions.

Pg. 13:  Just curious: What motivated the cap on leachate concentrations
less than or equal to 1,000 mg/L?

Pg. 19:  Good outline of action to encourage user's variation of depth to
water and aquifer thickness.  Last Paragraph: What is a general range of
radial distances to down-gradient monitoring well used by different state
regulatory agencies?  How does this range compare to ranges and defaults in
table 4.2-4.5?

Pg. 20:  Excellent to label a warning of uncertainty regions for parameter
settings.  Very good safety feature.

Pg. 38 & pg. 60:  Report and Print Issue.
In the National Evaluation Summary and the Location-Adj Evaluation Summary
the online text could add after the phrase "You may choose to print the
results and exit this program" something like " To print results click on
the report button at the bottom of the screen.  Many systems do not
automatically connect report with printing of results.  I myself as a MAC
user kept looking around for print or report icons, of course it is
mentioned in the manual, but this would make the software more manual
independent.

Pg. 53:  It could be useful to have some justification examples here.

IWEM Interactive Model

Overall I found the software straightforward to step through the
processes.  Installation:  Nice welcome, helpful defaults, installation and
uninstallation methods consistent with industry standards.

Definition boxes:
Again WMU could use more definition here

Location Adjusted Evaluation:
Location parameters: defaults



54

As mentioned in the above section it might be useful to have some example
justifications for parameters to indicate for archival purposes what degree
of information is helpful.  Also more completeness of steps in some of the
windows would be helpful, for example description of hitting the report
button below in order to get the print and report icons.

I experienced some freezing up of the system, perhaps due to my
unfamiliarity with Windows (I am a Macintosh user primarily)

C.  Technical Background Document EPA530-R-99-002 (ANN Background)

Overall:  I like the impact of using a conservatively chosen DAR (90th
percentile).  Looks pretty clean, I notice several inconsistencies in the
Dec 16 version have been corrected on the April 16 version.

Introduction:
Good concise overview of the two-tiered approach, discussion of
uncertainty, and pointers to main Guidance.  A particularly important point
is the existence of Tier 3 possibilities.

Overall Modeling Strategy:

2.1.  pg. 4. It might be helpful to list the three liner designs in the
last sentence here with a pointer to their being discussed in more detail
in section 2.1.2.

2.1.2. pg. 7
It would be interesting to have some brief summary, perhaps quoted from
the main EPA Guide, about what types of clays are recommended to reach the
1 x 10 -7 cm/sec hydraulic conductivity levels, how difficult it is to
insure an even 3 ft layer, or other interesting issues about quality and
consequences of liner construction.

2.2.2   Basis  for Use of the 90th Percentile
I read this paragraph as the EPA selected the 90th percentile output of
the ground-water fate and transport modeling for this guidance but not that
the 90th percentile is a standard with EPA for any Monte Carlo or other
stochastic approach.  You might wish to comment on whether using the 90th
percentile is a standard recommended by the EPA and Science Advisory Board
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or whether there is often a range over which the EPA recommends analysis.
This would be a good place to discuss any studies where you may have
examined variations between 85-95 percentile or observed how rapidly the
percentiles change.

2.3.1  Overview of Neural Networks
Pg. 10:  1st paragraph, Correct spelling of reference (Rizzo and
Dougherty, 1994).

3rd paragraph, One difference between neural networks and regression
analysis which could be discussed here it that anns do not require an a
priori model or prespecified curve type which the data will be fit to.
Instead the ann empirically develops its own representation of the data
expressed by the weights.

Pg. 11: This is a very concise and eloquent backprop description.  You may
wish to note that you are describing backpropagation neural networks that
form the majority of applications; however, this does not pertain to other
types of neural networks.  This could be tied into the description of
backprop and conjugate gradient training in the appendix, note the comments
below for the appendix pg. A-15.

Pg. 12: 4th paragraph.  In the discussion of  over-fitting it may be
helpful to discuss how the training set is usually such a small sampling of
the overall range of possibilities or search space and over-fitting is
where network weights get too specialized on idiosyncratic features of the
training set and thus has a lower generalization performance (i.e.
performance on the larger search space beyond the training set).

Pg. 12: last paragraph:  It would be good here to have a bit more
description of sensitivity analysis of output to input value changes.  I
believe you are referring to input value changes not changes in which type
of input you are using.

3.2.3
pg.27  Good to see you have included the complexity of a non-linear
concentration dependant isotherm.

3.3 EPACMTP
pg. 28: Which parts of the contaminant transport component use analytical
techniques and which use numerical?
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3.3.3
pg. 33: It would be interesting to have a list of the 52 EPACMTP input
parameters here next to the list of 28 parameters just for comparison.

pg. 34:  1st paragraph: How about a list of the 10th to 90th percentile
values for the 28 parameters or a pointer to where it is discussed in more
detail? For instance, the median aquifer thickness seems quite thin and it
would be interesting to see the range used in the deterministic sensitivity
analysis.

pg. 36:  2nd paragraph, last sentence:  Again how about identifying where
the number of parameters in the subset are discussed in more detail.

pg. 39: Table 3-5 and 3-6 Check for consistency about whether second and
third words of parameter descriptions are capitalized: example Depth of
Unsaturated Zone is also spelled Depth of unsaturated zone. Also variation
in Angle of Well off of Plume Centerline.

Table 3-7 pg. 43: Consider adding the word "only" into the phrase "ponding
depth for surface impoundments [only]".

Pg. 45:  first full sentence:  while is misspelled in "wile maintaining
the desired accuracy".

pg. 50: Figure 4-1 Note spelling of radius.

5.2
Pg. 55:  The discussion of Figure 5-1 states "The output layer consisted
of the ground-water well concentration which are then converted to a DAF."
The concentration in the singular does not match the noun "are" in the
plural, and Figure 5-1 describes  two concentrations, an average
concentration and a peak concentration.

Pg. 59:  It seems the table called out as Table 5-7 is labeled as Table
5-1 on page 62.

Pg. 62: Table 5-1  Why are there so few landfill training data sets?

Pg. 63:  Could you clarify how the testing and validation data sets relate
to each other and if there is any overlap between them.  Also consider
adding a pointer to the appropriate appendix.  Will you consider adding
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more landfill and land application training data sets and doing more
training to further gain "incremental gains in predictive ability that may
be realized through additional neural network training"?

Pg. A-2:  A.2.1. Again clarification about whether there is any overlap
between test and validation data sets would be helpful.  Also on the last
line there is a space gap between additional secondary  in the last line on
the page A-2 and test data on pg. A-4. Figure A.2.1. seems to suggest that
the training data matrix is a subset of 30% of the validation data matrix
and that doesn't seem likely as the training set is so much larger than the
validation set.

Tables A.2.1-5  The input parameter term RADIS does not match the term
listed on pg. A-7 RADIUS.

Pg. A-7 A.2.1.1. The two EPACMTP output parameters used to train the anns
are listed in the first sentence of the middle paragraph as the peak well
concentration and the maximum 30-yr average well concentration.  The last
sentence in the middle paragraph states "Therefore, the landfill neural
network did not consider DOC as an input parameter and did not use the
average peak 30-year concentration as an output parameter."  Is the maximum
30-yr average well concentration then the average peak 30-year
concentration?

Pg. A-7:  The last paragraph has  the phrase "representing the of seven
input parameters." Missing word?

Pg. A-9  Good discussion of using histograms to make sure input values in
the training were represented a balanced distribution.  Also you have used
a nice range of methods to develop additional data sets.

Pg. A-10  It would be helpful to include more discussion of logic behind
the creation of additional data samples.  For example the group 1 data
samples appear to be created to add in test data which had not been well
predicted by the networks (i.e. higher residuals) to the training data.
The discussion of the Group 4 data samples is good.  Overall one has the
sense from the conclusions herethat the waste pile and land application
unit networks benefited from what you learned during training the landfill
and surface impoundment nets and the former two nets have better summary
statistics (pg. 62).  It's not clear that you took all that you learned
back into the training of the landfill and surface impoundment nets to get
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the best performance you could from them.

Another point, for the nets with two outputs, did you consider dividing a
network into two networks one trained for each of the outputs; this
increases the ratio of training examples to network weights and can help
performance.

Pg. A-14 Initialization:  Good point raised about the initial settings
having a "significant affect on overall performance".  You state you did
not perform an analysis to determine the "optional" initial settings.  Did
you mean optimal instead of optional?  Did you vary the initialization
weights over some range in different training?

Pg. A-16 Terminology Question:  I would refer to these two types of
training methods as variations of learning and that the conjugate gradient
training is still used in a backpropagation network. Is that your use of
the terminology?  If so it might be good to clarify that here.  One might
just call the first training backpropagation with steepest descent learning
and the second backpropagation with conjugate gradient learning.

Also my understanding of the conjugate gradient method is that the second
derivative of the error surface is used to signal a point of decreasing
returns on the training and at this point a step in a direction
perpendicular to the error gradient is taken, thus the name conjugate
gradient.  If this is what your algorithm is doing, I think this is an
interesting point to give readers a physical sense of how the search
proceeds and contrast this to the steepest descent gradient approach as the
conjugate gradient goes downgradient until there is a flat spot and then
jumps perpendicular if it looks like there is stagnation.  Note this is a
powerful approach to avoid local minimums in the search space.  These
points would help explain the why behind your statement that the conjugate
gradient training is "generally more accurate for optimizing weights".
Note in the text this statement has an extra "a" before the more accurate,
need remove it or add "method" after accurate.

Pg. A-14  Did you ever use less than 10 hidden nodes, if so how was the
performance? Usually a simpler net is preferred so there are less network
weights and the number of examples goes further.

Pg. A-23 Figure A.2.3  What physically do the oscillations mean in Log of
peak concentration at the higher observation numbers?
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Pg. A-23 First paragraph.  The phrase is used " a trained neural network
that used many additions of training data sets".  How many additional
examples were used?

Pg. A-27:  Figure A-2-8 Why are there only three data points from EPACMTP
data plotted here?

Pg. A-29:  Is evaluation of the ann's performance outside the 10th to 90th
percentiles planned to be accomplished before this model is released to a
wider audience?

Pg. A-34  LFNN training appears to have good generalization despite the
relatively few training examples.  It is possible this is because the ann
was being asked to predict one output.

Pg. A-44:  Perhaps there is less anxiety producing or confidence lessening
terminology to use than good and bad here.  Consider concepts such as dense
or sparse coverage or well/poorly sampled.

Pg. A-48:  I'm still just missing something here, it's not clear to me why
the surface impoundment curves have such strong oscillations.

Pg. A-53:  This seems to be the ann's poorest validation performance of
the four types of waste units.  Again I would be curious if training to one
output at a time would be a quick way to see if some improvement could be
made.  For example use 2747 training examples to train for log of peak conc
and then use them to train for log of average conc.

**It would be nice to have the number of inputs and number of output
reviewed inthe summary tables of final ann features for each of the four
types.

Pg. A-59:  With all this appending three times it would be good to have
footnotes in the summaries of number of training runs about how many were
unique runs.  If they are lumped into the training runs too many times the
summary statistics may be misleading.  It's one thing to append them to the
training set to help "balance data combinations" as you say, but it would
be good to clarify if this is not inflating the actual number of unique
training runs.

Pg. A-60:  Interesting concept of a chemical validation set.  Even though
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WPNN-A did not win out this may be a type of metric you wish to keep in
mind for next generations of this tool.

Overall on the anns:  As you have stated the performance is better on the
last two nets and poorest on the surface impoundment's nets.  Again,
perhaps you have plans to go back into the first two with the deeper
experience with adding additional training data sets.

Pg. A-83:  This is a significant effort and reflects much progress.
Continuing to refine the methodology is an important investment in
increasing the dependability and acceptance of such visionary tools.

Pg. D-1:  Again it may be appropriate here to differentiate between the
type of neural network referred to as backpropagation network and the
variations in learning.

Pg. D-2:  Under Feed Forward Propagation it might be more accurate to call
this a neural network process rather than method because it is something
done with an entity rather than an entity itself.
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